Mathematic 104, Fall 2010: Assignment \#3
 Due: Wednesday, October 20th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem \#1. Excercise 2.6 of Lecture 2 of Trefethen-Bau.
Problem \#2. Excercise 6.3 of Lecture 6 of Trefethen-Bau.
Problem $\# 3$. Let E be the space in \mathbb{R}^{3} spanned by

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

a) Find the matrix $P \in \mathbb{R}^{3 \times 3}$ corresponding to orthogonal projection onto E.
b) Find a unit vector $q \in \mathbb{R}^{3}$ so that P is the complementary projector to P_{q}. Recall $P_{q}=q q^{\top}$ is the projector onto the space spanned by q.

Problem \#4. Let $A \in \mathbb{C}^{m \times n}$ matrix and $B \in \mathbb{C}^{n \times k}$ matrix. Show that a necessary and sufficient condition for $R(A B)=R(A)$ is that $N(A)+R(B)=\mathbb{C}^{n}$.

Problem \#5. Let $v=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right] \in \mathbb{R}^{2}$.
a) Find the orthogonal projector $P_{v} \in \mathbb{R}^{2 \times 2}$.
b) Find the orthogonal matrix $U \in \mathbb{R}^{2 \times 2}$ so that $P_{v}=U X U^{\top}$ where X is a diagonal matrix with non-negative entries on the diagonal. (Hint: Think geometrically).

Bonus Problem. Let $E, F \subset \mathbb{C}^{n}$ be two vector spaces. Show that

$$
\operatorname{dim}(E+F)=\operatorname{dim} E+\operatorname{dim} F-\operatorname{dim}(E \cap F)
$$

(Hint: Let v_{1}, \ldots, v_{k} be a basis E and w_{1}, \ldots, w_{l} be a basis of F. Consider the $n \times(k+l)$ matrix $X=$ $\left[\begin{array}{lllll}v_{1} \mid & \cdots & \left|v_{k}\right| w_{1} \mid & \cdots & \mid w_{l}\end{array}\right]$).

