Mathematic 104, Fall 2010: Assignment #3

Due: Wednesday, October 20th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown – even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are *not* required and will *not* be graded.

Problem #1. Excercise 2.6 of Lecture 2 of Trefethen-Bau.

Problem #2. Excercise 6.3 of Lecture 6 of Trefethen-Bau.

Problem #3. Let *E* be the space in \mathbb{R}^3 spanned by

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix} \text{ and } \begin{bmatrix} 0\\-1\\1 \end{bmatrix}$$

- a) Find the matrix $P \in \mathbb{R}^{3 \times 3}$ corresponding to orthogonal projection onto E.
- b) Find a unit vector $q \in \mathbb{R}^3$ so that P is the complementary projector to P_q . Recall $P_q = qq^{\top}$ is the projector onto the space spanned by q.

Problem #4. Let $A \in \mathbb{C}^{m \times n}$ matrix and $B \in \mathbb{C}^{n \times k}$ matrix. Show that a necessary and sufficient condition for R(AB) = R(A) is that $N(A) + R(B) = \mathbb{C}^n$.

Problem #5. Let $v = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \in \mathbb{R}^2$.

- a) Find the orthogonal projector $P_v \in \mathbb{R}^{2 \times 2}$. b) Find the orthogonal matrix $U \in \mathbb{R}^{2 \times 2}$ so that $P_v = UXU^{\top}$ where X is a diagonal matrix with non-negative entries on the diagonal. (Hint: Think geometrically).

Bonus Problem. Let $E, F \subset \mathbb{C}^n$ be two vector spaces. Show that

$$\dim(E+F) = \dim E + \dim F - \dim(E \cap F).$$

(Hint: Let v_1, \ldots, v_k be a basis E and w_1, \ldots, w_l be a basis of F. Consider the $n \times (k+l)$ matrix X = $\begin{bmatrix} v_1 & \cdots & |v_k| w_1 | & \cdots & |w_l \end{bmatrix}$).