Mathematic 104, Fall 2010: Assignment \#5

Due: Wednesday, November 10th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem $\# 1$. Let $A \in \mathbb{R}^{2 \times 2}$ be the following matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]
$$

Denote by $S_{p}=\left\{u \in \mathbb{R}^{2}:\|u\|_{p}=1\right\}$ the set of vectors of length 1 in the p-norm and let $A S_{p}=\left\{A u \in \mathbb{R}^{2}\right.$: $\left.u \in S_{p}\right\}$ be the image under A of S_{p}. Here $1 \leq p \leq \infty$.
a) Determine $\|A\|_{1}$ and find vectors $u \in S_{1}$ and $v=A u \in A S_{1}$ so that $\|v\|_{1}=\|A u\|_{1}=\|A\|_{1}$. Sketch S_{1} and $A S_{1}$ and indicate the vectors u and v on the sketch.
b) Determine $\|A\|_{\infty}$ and find vectors $u \in S_{\infty}$ and $v=A u \in A S_{\infty}$ so that $\|v\|_{\infty}=\|A u\|_{\infty}=\|A\|_{\infty}$. Sketch S_{∞} and $A S_{\infty}$ and indicate the vectors u and v on the sketch.
c) Determine $\|A\|_{2}$ and find vectors $u \in S_{2}$ and $v=A u \in A S_{2}$ so that $\|v\|_{2}=\|A u\|_{2}=\|A\|_{2}$. Sketch S_{2} and $A S_{2}$ and indicate the vectors u and v on the sketch. To do this it is useful to use that any vector $u \in S_{2}$ may be written as

$$
u=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

Problem \#2. Suppose that $P \in \mathbb{C}^{m \times m}$ and $P^{2}=P$ (so P is an oblique projector). Show that as long as $P \neq 0,\|P\|_{2} \geq 1$ and $\|P\|_{2}=1$ when and only when P is an orthogonal projector.

Problem \#3. Compute $\|P\|_{F}$ when P is an orthogonal projector. (Hint: Use the proof of Theorem 6.1 of Trefethen-Bau).

Problem \#4. Excercise 3.5 of Lecture 3 of Trefethen-Bau.
Bonus Problem. Consider X the set of points $(x, y) \in \mathbb{R}^{2}$ that statisfy

$$
A x^{2}+B x y+C y^{2}+D y+E x+F=0
$$

for $A, B, C, D, E, F \in \mathbb{R}$ and A, B, C not all zero. This set is called a conic section and X may (among other things) be an ellipse, a hyperbola or a parabola. It turns out that if $B^{2}-4 A C<0$ then X either consists of zero or one point or is an ellipse. Assume the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ are known to lie approximately on an ellipse. Set up a least squares problem to find X the ellipse that best fits these points in the sense of least squares.

