Mathematic 104, Fall 2010: Assignment \#6

Due: Wednesday, November 17th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem \#1. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]
$$

a) By hand compute the SVD of A. To do this it is useful to recall that all vectors in x with $\|x\|_{2}=1$ are of the form

$$
x=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

b) Using the SVD determine the rank one matrix B that best approximates A in the Frobenius norm.
c) Compare how well B approximates A in the Frobenius norm with how well the rank one matrices

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } A_{2}=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]
$$

approximate A in the Frobenius norm.

Problem \#2. Excercise 4.4 of Lecture 4 of Trefethen-Bau.
Problem \#3. Let $A_{1}, A_{2} \in \mathbb{C}^{m \times m}$ suppose that the left singular vectors of A_{1} are $\left\{u_{1}^{1}, \ldots, u_{m}^{1}\right\}$ and the right singular vectors are $\left\{v_{1}^{1}, \ldots, v_{m}^{1}\right\}$ while the left singular vectors of A_{2} are $\left\{u_{1}^{2}, \ldots, u_{m}^{2}\right\}$ and the right singular vectors are $\left\{v_{1}^{2}, \ldots, v_{m}^{2}\right\}$. Show that if for $1 \leq i \leq m$

$$
u_{i}^{1}=v_{i}^{1}=u_{i}^{2}=v_{i}^{2}
$$

then $A_{1} A_{2}=A_{2} A_{1}$. That is if two square matrices have the same left and right singular vectors then they commute. (Hint: Think about the problem for diagonal matrices first, then use the SVD of A_{1} and A_{2}).

Problem \#4. Suppose that A has the following (full) SVD

$$
A=\left[\begin{array}{ccc}
0 & \sqrt{2} / 2 & \sqrt{2} / 2 \\
1 & 0 & 0 \\
0 & -\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
4 / 5 & -3 / 5 \\
3 / 5 & 4 / 5
\end{array}\right]
$$

a) Using only the SVD give an orthonormal basis of $R(A)$.
b) Compute a (full) $Q R$ factorization of A.
c) Using the $Q R$ factorization of A give an orthonormal basis of $R(A)$. Does this agree with your answer in a)?

Problem \#5. Let $A \in \mathbb{C}^{m \times m}$ have singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m} \geq 0$.
a) Show that if $\lambda=\mu \sigma_{1}$ is an eigenvalue of A for $|\mu|=1$ then $\left\|A^{2}\right\|_{2}=\|A\|_{2}^{2}$. Recall λ is an eigenvalue of A when the matrix $A-\lambda I$ is singular.
b) Assume in addition that $\sigma_{1}>\sigma_{2}$ show that if $\left\|A^{2}\right\|_{2}=\|A\|_{2}^{2}$ then $\mu \sigma_{1}$ is an eigenvalue of A for some μ with $|\mu|=1$. (Hint: Think about the proof of the uniqueness of singular vectors for the SVD)

Bonus Problem. Determine if the condition in Problem \#5 part b) that $\sigma_{1}>\sigma_{2}$ is necessary. That is prove the result without this assumption or give a counter-example.

