Mathematic 104, Fall 2010: Assignment \#7

Due: Wednesday, December 3rd

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem \#1. Excercise 2.5 of Lecture 2 of Trefethen-Bau. (In part a) you may use the Schur factorization, in part c) it is helpful to think about the factorization $\left.(I-S)(I+S)=I-S^{2}\right)$.

Problem \#2. Excercise 3.2 of Lecture 3 of Trefethen-Bau. (Here $\|A\|$ means the induced matrix norm on A from $\|\cdot\|$ on \mathbb{C}^{m}).

Problem \#3. Consider the matrix:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & -3 & 0 \\
0 & 1 & 2 & 0 & 1
\end{array}\right]
$$

Find the singular values of A. You do not need to compute the full SVD. (Hint: There is a right way to do this and a wrong way).

Problem \#4. Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array}\right] \in \mathbb{R}^{2 \times 2}
$$

Here $r>0$.

Problem \#5. Let

$$
A=\left[\begin{array}{cc}
13 & 9 \\
-16 & 37
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-35 & 45 \\
20 & 10
\end{array}\right]
$$

a) Compute the Schur factorization of A and of B. (Hint: Use the proof of Theorem 24.9 of TrefethenBau and the fact that the characteristic polynomials of A and B are easy to factor to find these factorizations).
b) Determine, for both A and B, whether the matrix is diagonalizable. If it is not explain why not and if it is diagonalize it.

Bonus Problem. We say a matrix $A \in \mathbb{C}^{m \times m}$ is normal if $A^{*} A=A A^{*}$. Show using the Schur factorization that if A is normal then A is unitarily diagonalizable. That is $A=Q \Lambda Q^{*}$ for Λ diagonal and Q unitary.

