Math 104 : Midterm

Instructions: Complete the following 4 problems. Remember to show all your work. No notes or calculators are allowed. Please sign below to indicate you accept the honor code.

Name:

SUID:

Signature: \qquad

Problem	1	2	3	4	Total
Score					

Problem \#1. (20 pts) Let $\mathbf{w}_{1}, \mathbf{w}_{2}$ and \mathbf{w}_{3} be three vectors in \mathbb{C}^{3}. Let

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{w}_{1}-\mathbf{w}_{3}, \\
& \mathbf{v}_{2}=\mathbf{w}_{1}+\mathbf{w}_{2}, \\
& \mathbf{v}_{3}=\mathbf{w}_{1}+\lambda \mathbf{w}_{3}, \text { and } \\
& \mathbf{v}_{4}=2 \mathbf{w}_{1}+\mathbf{w}_{2}-\mathbf{w}_{3} .
\end{aligned}
$$

Where here $\lambda \in \mathbb{C}$. For what value λ_{0} is it always true that when $\lambda=\lambda_{0}$, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4} never span \mathbb{C}^{3}. Justify your answer. (Hint: Rewrite the problem using matrices).

Problem \#2. (30 pts) Let

$$
\mathbf{v}=\left[\begin{array}{c}
2 \sin \theta \\
-2 \cos \theta
\end{array}\right] \in \mathbb{R}^{2}
$$

Let $A \in \mathbb{R}^{2 \times 2}$ denote the matrix which gives orthogonal projection onto $\operatorname{span}(\mathbf{v})$.
a) Determine A.
b) Determine $N(A)$ and $R(A)$.
c) Determine a full $Q R$ factorization of A.

Problem \#3. (20 pts) Let $A, B \in \mathbb{C}^{m \times m}$ suppose that $A B=0$ and $B A=0$.
a) What, if any, is the relationship between the null space of A and the column space of B ? Justify your answer.
b) Show that either $\operatorname{dim} N(A) \geq \frac{m}{2}$ or $\operatorname{dim} N(B) \geq \frac{m}{2}$.

Problem \#4. (30 pts)
a) Suppose that $A, B \in \mathbb{C}^{m \times m}$ are unitary matrices. Verify that A^{*} and $A B$ are also unitary. (Hint: Use the algebraic properties of the adjoint)
b) Let

$$
\mathbf{v}_{1}=\frac{1}{5}\left[\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right], \mathbf{v}_{2}=\frac{1}{5}\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \in \mathbb{R}^{3}
$$

Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}. Justify your answer.
c) Let

$$
\mathbf{w}_{1}=\frac{\sqrt{2}}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \mathbf{w}_{3}=\frac{\sqrt{2}}{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \in \mathbb{R}^{3}
$$

be a set of orthonormal vectors. Determine the orthogonal matrix $U \in$ $\mathbb{R}^{3 \times 3}$ so that $U \mathbf{v}_{i}=\mathbf{w}_{i}$ for $i=1,2,3$ here the \mathbf{v}_{i} are given in b). (Hint: Use part a))

