Math 104 : Midterm

Instructions: Complete the following 4 problems. Remember to show all your work. No notes or calculators are allowed. Please sign below to indicate you accept the honor code.

Name: ____________________________

SUID: ____________________________

Signature: ________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem #1. (20 pts) Let w_1, w_2 and w_3 be three vectors in \mathbb{C}^3. Let
\begin{align*}
v_1 &= w_1 - w_3, \\
v_2 &= w_1 + w_2, \\
v_3 &= w_1 + \lambda w_3, \text{ and} \\
v_4 &= 2w_1 + w_2 - w_3.
\end{align*}
Where here $\lambda \in \mathbb{C}$. For what value λ_0 is it always true that when $\lambda = \lambda_0$, v_1, v_2, v_3 and v_4 never span \mathbb{C}^3. Justify your answer. (Hint: Rewrite the problem using matrices).

Answer:
Let us set
\begin{align*}
V &= [v_1 | v_2 | v_3 | v_4] \\
W &= [w_1 | w_2 | w_3]
\end{align*}
Then we have
\begin{align*}
V &= WA
\end{align*}
where
\begin{align*}
A &= \begin{bmatrix}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 \\
-1 & 0 & \lambda & -1
\end{bmatrix}
\end{align*}
The v_i do not span \mathbb{C}^3 when and only when $\dim R(V) \leq 2$. By the rank-nullity theorem this occurs when and only when $\dim N(V) \geq 1$. Notice that $N(A) \subset N(V)$ and so $\dim N(V) \geq \dim N(A)$. Applying the Gaussian elimination algorithm to A one arrives after a sequence of row operations to A' with
\begin{align*}
A' &= \begin{bmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & \lambda + 1 & 0
\end{bmatrix}
\end{align*}
Notice if $\lambda + 1 = 0$ then $rref(A)$ has 2 pivots. Otherwise $rref(A)$ has 3 pivots. In the former case, $\dim N(A) = \dim N(rref(A)) = 4 - 2 = 2$ while in the latter $\dim N(A) = \dim N(rref(A)) = 4 - 3 = 1$. In particular, $\lambda_0 = -1$ always ensures that the v_i do not span. Notice that if the w_i are linearly independent and $\lambda_0 \neq -1$ then $\dim N(V) = \dim N(A) = 1$ and so $\dim R(V) = 3$. In particular, the v_i would span \mathbb{C}^3 in this case.
Problem #2. (30 pts) Let
\[v = \begin{bmatrix} 2 \sin \theta \\ -2 \cos \theta \end{bmatrix} \in \mathbb{R}^2 \]

Let \(A \in \mathbb{R}^{2 \times 2} \) denote the matrix which gives orthogonal projection onto \(\text{span}(v) \).

a) Determine \(A \).

Answer:
As \(v \neq 0 \), \(\text{span}(v) \) is one dimensional. Hence there is a unit length vector \(q \in \text{span}(v) \) and \(\text{span}(q) = \text{span}(v) \). In particular, take
\[q = \frac{1}{2} v = \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix}. \]

The projector \(A \) is then given by:
\[A = qq^* = \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix} = \begin{bmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ -\sin \theta \cos \theta & \cos^2 \theta \end{bmatrix}. \]

b) Determine \(N(A) \) and \(R(A) \).

Answer:
As \(A \) is a projector onto \(\text{span}(v) \) one must have \(R(A) = \text{span}(v) \) by definition. Because \(A \) is an orthogonal projector one also has \(R(A) = N(A) \). Notice that for
\[w = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \]

one has \(w \neq 0 \) and \(\langle w, v \rangle = 0 \). So \(w \in R(A) = N(A) \) and is non-trivial. As \(\text{dim}N(A) = 1 \) (by the rank-nullity theorem for instance) one then has \(N(A) = \text{span}(w) \).
c) Determine a full QR factorization of A.

Answer:
The first column of A is

\[a_1 = \begin{bmatrix} \sin^2 \theta \\ -\sin \theta \cos \theta \end{bmatrix} = \sin \theta \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix} = \sin \theta q_1. \]

Here q_1 is a unit vector and $\text{span}(a_1) \subset \text{span}(q_1)$. Hence is the correct choice for the QR factorization. In this case $r_{11} = \sin \theta$. We now set

\[r_{12} = \langle q_1, a_2 \rangle = -\sin^2 \theta \cos \theta - \cos^3 \theta = -\cos \theta (\sin^2 \theta + \cos^2 \theta) = -\cos \theta \]

Then with a_2 the second column of A

\[\hat{q}_2 = a_2 - r_{12}q_1 = 0 \]

Thus we just need to pick q_2 orthogonal to q_1 and set $r_{22} = 0$ we determined such a q_2 in b) Hence we have the full QR factorization

\[A = QR = \begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix} \begin{bmatrix} \sin \theta & -\cos \theta \\ 0 & 0 \end{bmatrix} \]

We note that the Q term is unitary (as the columns are orthonormal) and the R term is upper-triangular so this is indeed a QR factorization.
Problem #3. (20 pts) Let $A, B \in \mathbb{C}^{m \times m}$ suppose that $AB = 0$ and $BA = 0$.

a) What, if any, is the relationship between the null space of A and the column space of B? Justify your answer.

Answer:
One has $R(B) \subset N(A)$ as if $v \in R(B)$ then there is a w so that $v = Bw$ and then $Av = ABw = 0w = 0$ and so $v \in N(A)$. There is no other relationship since for instance if $A = 0$ and $B = I$ then $AB = 0 = BA$ but $R(B) = \mathbb{C}^m$ while $R(A) = \{0\}$.

b) Show that either $\dim N(A) \geq \frac{m}{2}$ or $\dim N(B) \geq \frac{m}{2}$.

Answer:
By part a) we have that $R(B) \subset N(A)$. Hence by the basis extension theorem we have $\dim R(B) \leq \dim N(A)$. By the rank-nullity theorem applied to B $\dim R(B) + \dim N(B) = m$. Thus,

$$m = \dim R(B) + \dim N(B) \leq \dim N(B) + \dim N(A)$$

This implies either $\dim N(B)$ or $\dim N(A)$ is larger than $m/2$ as claimed.
Problem #4. (30 pts)

a) Suppose that $A, B \in \mathbb{C}^{m \times m}$ are unitary matrices. Verify that A^* and AB are also unitary. (Hint: Use the algebraic properties of the adjoint)

Answer:
Since A is unitary one has $AA^* = I$ taking the adjoint of this implies $(AA^*)^* = I^* = I$. Thus $(A^*)^* A^* = I$ that is $(A^*)^{-1} = (A^*)^*$ which means A^* is unitary. Similarly, $BB^* = I$ so $(AB)^* AB = B^* A^* AB = B^* IB = B^* B = I$ which implies $(AB)^{-1} = (AB)^*$ and so AB is unitary.

b) Let
\[
\mathbf{v}_1 = \frac{1}{5} \begin{bmatrix} 3 \\ 0 \\ -4 \end{bmatrix}, \mathbf{v}_2 = \frac{1}{5} \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \mathbb{R}^3
\]
Verify that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis of \mathbb{R}^3. Justify your answer.

Answer:
By direct computation one verifies that $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij}$ (i.e. is 1 when $i = j$ and otherwise 0). This implies the set is orthonormal. Any orthogonal set of vectors is automatically linearly independent and as there are three elements in the set and $\dim \mathbb{C}^3 = 3$ we must have that the \mathbf{v}_i also span \mathbb{C}^3 and hence are a basis.
c) Let
\[w_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, w_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, w_3 = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^3 \]
be a set of orthonormal vectors. Determine the orthogonal matrix \(U \in \mathbb{R}^{3 \times 3} \) so that \(U v_i = w_i \) for \(i = 1, 2, 3 \) here the \(v_i \) are given in b). (Hint: Use part a)

Answer:
Let us write
\[V = [v_1 | v_2 | v_3] \quad \text{and} \quad W = [w_1 | w_2 | w_3]. \]
As both \(\{v_i\} \) and \(\{w_i\} \) are orthonormal bases of \(\mathbb{C}^3 \) both \(V \) and \(W \) are orthogonal matrices. We note that orthogonal and unitary are the same in this context as both matrices have real entries. Then we have
\[W = UV \]
so
\[U = W V^{-1} = W V^\top (= W V^*) \]
By part a) \(U \) is unitary and has real entries so is orthogonal. We compute explicitly
\[
U = \begin{bmatrix}
3\sqrt{2}/10 & -\sqrt{2}/2 & -2\sqrt{2}/5 \\
-4/5 & 0 & -3/5 \\
3\sqrt{2}/10 & \sqrt{2}/2 & -2\sqrt{2}/5
\end{bmatrix}
\]