Math 104 : Midterm

Instructions: Complete the following 4 problems. Remember to show all your work. No notes or calculators are allowed. Please sign below to indicate you accept the honor code.

Name:

SUID:

Signature: \qquad

Problem	1	2	3	4	Total
Score					

Problem \#1. (20 pts) Let $\mathbf{w}_{1}, \mathbf{w}_{2}$ and \mathbf{w}_{3} be three vectors in \mathbb{C}^{3}. Let

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{w}_{1}-\mathbf{w}_{3}, \\
& \mathbf{v}_{2}=\mathbf{w}_{1}+\mathbf{w}_{2}, \\
& \mathbf{v}_{3}=\mathbf{w}_{1}+\lambda \mathbf{w}_{3}, \text { and } \\
& \mathbf{v}_{4}=2 \mathbf{w}_{1}+\mathbf{w}_{2}-\mathbf{w}_{3} .
\end{aligned}
$$

Where here $\lambda \in \mathbb{C}$. For what value λ_{0} is it always true that when $\lambda=\lambda_{0}$, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4} never span \mathbb{C}^{3}. Justify your answer. (Hint: Rewrite the problem using matrices).

Answer:

Let us set

$$
V=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mid \mathbf{v}_{2} & \mid \mathbf{v}_{3} & \mid \mathbf{v}_{4}
\end{array}\right]
$$

and

$$
W=\left[\begin{array}{lll}
\mathbf{w}_{1} & \mid \mathbf{w}_{2} & \mid \mathbf{w}_{3}
\end{array}\right]
$$

Then we have

$$
V=W A
$$

where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & 0 & 1 \\
-1 & 0 & \lambda & -1
\end{array}\right]
$$

The \mathbf{v}_{i} do not span \mathbb{C}^{3} when and only when $\operatorname{dim} R(V) \leq 2$. By the ranknullity theorem this occurs when and only when $\operatorname{dim} N(V) \geq 1$. Notice that $N(A) \subset N(V)$ and so $\operatorname{dim} N(V) \geq \operatorname{dim} N(A)$. Applying the Gaussian elimination algorithm to A one arrives after a sequence of row operations to A^{\prime} with

$$
A^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & \lambda+1 & 0
\end{array}\right]
$$

Notice if $\lambda+1=0$ then $\operatorname{rref}(A)$ has 2 pivots. Otherwise $\operatorname{rref}(A)$ has 3 pivots. In the former case, $\operatorname{dim} N(A)=\operatorname{dim} N(\operatorname{rref}(A))=4-2=2$ while in the latter $\operatorname{dim} N(A)=\operatorname{dim} N(\operatorname{rref}(A))=4-3=1$. In particular, $\lambda_{0}=-1$ always ensures that the \mathbf{v}_{i} do not span. Notice that if the \mathbf{w}_{i} are linearly independent and $\lambda_{0} \neq-1$ then $\operatorname{dim} N(V)=\operatorname{dim} N(A)=1$ and so $\operatorname{dim} R(V)=3$. In particular, the \mathbf{v}_{i} would span \mathbb{C}^{3} in this case.

Problem \#2. (30 pts) Let

$$
\mathbf{v}=\left[\begin{array}{c}
2 \sin \theta \\
-2 \cos \theta
\end{array}\right] \in \mathbb{R}^{2}
$$

Let $A \in \mathbb{R}^{2 \times 2}$ denote the matrix which gives orthogonal projection onto $\operatorname{span}(\mathbf{v})$.
a) Determine A.

Answer:

As $\mathbf{v} \neq 0, \operatorname{span}(\mathbf{v})$ is one dimensional. Hence there is a unit length vector $\mathbf{q} \in \operatorname{span}(\mathbf{v})$ and $\operatorname{span}(\mathbf{q})=\operatorname{span}(\mathbf{v})$. In particular, take

$$
\mathbf{q}=\frac{1}{2} \mathbf{v}=\left[\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right]
$$

The projecter A is then given by:

$$
A=\mathbf{q q}^{*}=\left[\begin{array}{ll}
\sin \theta & -\cos \theta
\end{array}\right]\left[\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\sin ^{2} \theta & -\sin \theta \cos \theta \\
-\sin \theta \cos \theta & \cos ^{2} \theta
\end{array}\right] .
$$

b) Determine $N(A)$ and $R(A)$.

Answer:

As A is a projector onto $\operatorname{span}(\mathbf{v})$ one must have $R(A)=\operatorname{span}(\mathbf{v})$ by definition. Because A is an orthogonal projector one also has $R(A)^{\perp}=$ $N(A)$. Notice that for

$$
\mathbf{w}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

one has $\mathbf{w} \neq 0$ and $\langle\mathbf{w}, \mathbf{v}\rangle=0$. So $\mathbf{w} \in R(A)^{\perp}=N(A)$ and is non-trivial. As $\operatorname{dim} N(A)=1$ (by the rank-nullity theorem for instance) one then has $N(A)=\operatorname{span}(\mathbf{w})$.
c) Determine a full $Q R$ factorization of A.

Answer:

The first column of A is

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
\sin ^{2} \theta \\
-\sin \theta \cos \theta
\end{array}\right]=\sin \theta\left[\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right]=\sin \theta \mathbf{q}_{1}
$$

Here \mathbf{q}_{1} is a unit vector and $\operatorname{span}\left(\mathbf{a}_{1}\right) \subset \operatorname{span}\left(\mathbf{q}_{1}\right)$. Hence is the correct choice for the $Q R$ factorization. In this case $r_{11}=\sin \theta$. We now set
$r_{12}=\left\langle\mathbf{q}_{1}, \mathbf{a}_{2}\right\rangle=-\sin ^{2} \theta \cos \theta-\cos ^{3} \theta=-\cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-\cos \theta$
Then with \mathbf{a}_{2} the second column of A

$$
\hat{\mathbf{q}}_{2}=\mathbf{a}_{2}-r_{12} \mathbf{q}_{1}=0
$$

Thus we just need to pick \mathbf{q}_{2} orthogonal to \mathbf{q}_{1} and set $r_{22}=0$ we determined such a \mathbf{q}_{2} in b) Hence we have the full $Q R$ factorization

$$
A=Q R=\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{cc}
\sin \theta & -\cos \theta \\
0 & 0
\end{array}\right]
$$

We note that the Q term is unitary (as the columns are orthonormal) and the R term is upper-triangular so this is indeed a $Q R$ factorization.

Problem \#3. (20 pts) Let $A, B \in \mathbb{C}^{m \times m}$ suppose that $A B=0$ and $B A=0$.
a) What, if any, is the relationship between the null space of A and the column space of B ? Justify your answer.

Answer:

One has $R(B) \subset N(A)$ as if $\mathbf{v} \in R(B)$ then there is a \mathbf{w} so that $\mathbf{v}=B \mathbf{w}$ and then $A \mathbf{v}=A B \mathbf{w}=0 \mathbf{w}=0$ and so $\mathbf{v} \in N(A)$. There is no other relationship since for instance if $A=0$ and $B=I$ then $A B=0=B A$ but $R(B)=\mathbb{C}^{m}$ while $R(A)=\{0\}$.
b) Show that either $\operatorname{dim} N(A) \geq \frac{m}{2}$ or $\operatorname{dim} N(B) \geq \frac{m}{2}$.

Answer:

By part a) we have that $R(B) \subset N(A)$. Hence by the basis extension theorem we have $\operatorname{dim} R(B) \leq \operatorname{dim} N(A)$. By the rank-nullity theorem applied to $B \operatorname{dim} R(B)+\operatorname{dim} N(B)=m$. Thus,

$$
m=\operatorname{dim} R(B)+\operatorname{dim} N(B) \leq \operatorname{dim} N(B)+\operatorname{dim} N(A)
$$

This implies either $\operatorname{dim} N(B)$ or $\operatorname{dim} N(A)$ is larger than $m / 2$ as claimed.

Problem \#4. (30 pts)
a) Suppose that $A, B \in \mathbb{C}^{m \times m}$ are unitary matrices. Verify that A^{*} and $A B$ are also unitary. (Hint: Use the algebraic properties of the adjoint)

Answer:

Since A is unitary one has $A A^{*}=I$ taking the adjoint of this implies $\left(A A^{*}\right)^{*}=I^{*}=I$. Thus $\left(A^{*}\right)^{*} A^{*}=I$ that is $\left(A^{*}\right)^{-1}=\left(A^{*}\right)^{*}$ which means A^{*} is unitary. Similarly, $B B^{*}=I$ so $(A B)^{*} A B=B^{*} A^{*} A B=$ $B^{*} I B=B^{*} B=I$ which implies $(A B)^{-1}=(A B)^{*}$ and so $A B$ is unitary.
b) Let

$$
\mathbf{v}_{1}=\frac{1}{5}\left[\begin{array}{c}
3 \\
0 \\
-4
\end{array}\right], \mathbf{v}_{2}=\frac{1}{5}\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \in \mathbb{R}^{3}
$$

Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthonormal basis of \mathbb{R}^{3}. Justify your answer.

Answer:

By direct computation one verifies that $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\delta_{i j}$ (i.e. is 1 when $i=j$ and otherwise 0). This implies the set is orthonormal. Any orthogonal set of vectors is automatically linearly independent and as there are three elements in the set and $\operatorname{dim} \mathbb{C}^{3}=3$ we must have that the \mathbf{v}_{i} also span \mathbb{C}^{3} and hence are a basis.
c) Let

$$
\mathbf{w}_{1}=\frac{\sqrt{2}}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], \mathbf{w}_{3}=\frac{\sqrt{2}}{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \in \mathbb{R}^{3}
$$

be a set of orthonormal vectors. Determine the orthogonal matrix $U \in$ $\mathbb{R}^{3 \times 3}$ so that $U \mathbf{v}_{i}=\mathbf{w}_{i}$ for $i=1,2,3$ here the \mathbf{v}_{i} are given in b). (Hint: Use part a))

Answer:

Let us write

$$
V=\left[\begin{array}{lll}
\mathbf{v}_{1} \mid & \mathbf{v}_{2} \mid & \mathbf{v}_{3}
\end{array}\right] \text { and } W=\left[\begin{array}{lll}
\mathbf{w}_{1} \mid & \mathbf{w}_{2} \mid & \mathbf{w}_{3}
\end{array}\right] .
$$

As both $\left\{\mathbf{v}_{i}\right\}$ and $\left\{\mathbf{w}_{i}\right\}$ are orthonormal bases of \mathbb{C}^{3} both V and W are orthogonal matrices. We note that orthogonal and unitary are the same in this context as both matrices have real entries. Then we have

$$
W=U V
$$

so

$$
U=W V^{-1}=W V^{\top}\left(=W V^{*}\right)
$$

By part a) U is unitary and has real entries so is orthogonal. We compute explicitly

$$
U=\left[\begin{array}{ccc}
3 \sqrt{2} / 10 & -\sqrt{2} / 2 & -2 \sqrt{2} / 5 \\
-4 / 5 & 0 & -3 / 5 \\
3 \sqrt{2} / 10 & \sqrt{2} / 2 & -2 \sqrt{2} / 5
\end{array}\right]
$$

