Math 104 : Midterm

Instructions: Complete the following 4 problems. Remember to show all your work. No notes or calculators are allowed. Please sign below to indicate you accept the honor code.

Name:	

SUID:

Signature: _____

Problem	1	2	3	4	Total
Score					

Problem #1. (20 pts) Let \mathbf{w}_1 , \mathbf{w}_2 and \mathbf{w}_3 be three vectors in \mathbb{C}^3 . Let

$$\mathbf{v}_1 = \mathbf{w}_1 - \mathbf{w}_3,$$

$$\mathbf{v}_2 = \mathbf{w}_1 + \mathbf{w}_2,$$

$$\mathbf{v}_3 = \mathbf{w}_1 + \lambda \mathbf{w}_3, \text{ and}$$

$$\mathbf{v}_4 = 2\mathbf{w}_1 + \mathbf{w}_2 - \mathbf{w}_3.$$

Where here $\lambda \in \mathbb{C}$. For what value λ_0 is it always true that when $\lambda = \lambda_0$, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ and \mathbf{v}_4 never span \mathbb{C}^3 . Justify your answer. (Hint: Rewrite the problem using matrices).

Answer:

Let us set

$$V = \begin{bmatrix} \mathbf{v}_1 & |\mathbf{v}_2 & |\mathbf{v}_3 & |\mathbf{v}_4 \end{bmatrix}$$

and

$$W = \begin{bmatrix} \mathbf{w}_1 & |\mathbf{w}_2 & |\mathbf{w}_3 \end{bmatrix}$$

V = WA

Then we have

where

$$A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & \lambda & -1 \end{bmatrix}$$

The \mathbf{v}_i do not span \mathbb{C}^3 when and only when $dimR(V) \leq 2$. By the ranknullity theorem this occurs when and only when $dimN(V) \geq 1$. Notice that $N(A) \subset N(V)$ and so $dimN(V) \geq dimN(A)$. Applying the Gaussian elimination algorithm to A one arrives after a sequence of row operations to A'with

	1	0	1	1	
A' =	0	1	0	1	
	0	0	$\begin{array}{c} 1\\ 0\\ \lambda+1 \end{array}$	0	

Notice if $\lambda + 1 = 0$ then rref(A) has 2 pivots. Otherwise rref(A) has 3 pivots. In the former case, dimN(A) = dimN(rref(A)) = 4 - 2 = 2 while in the latter dimN(A) = dimN(rref(A)) = 4 - 3 = 1. In particular, $\lambda_0 = -1$ always ensures that the \mathbf{v}_i do not span. Notice that if the \mathbf{w}_i are linearly independent and $\lambda_0 \neq -1$ then dimN(V) = dimN(A) = 1 and so dimR(V) = 3. In particular, the \mathbf{v}_i would span \mathbb{C}^3 in this case. Problem #2. (30 pts) Let

$$\mathbf{v} = \begin{bmatrix} 2\sin\theta\\ -2\cos\theta \end{bmatrix} \in \mathbb{R}^2$$

Let $A \in \mathbb{R}^{2 \times 2}$ denote the matrix which gives orthogonal projection onto $span(\mathbf{v})$.

a) Determine A.

Answer:

As $\mathbf{v} \neq 0$, $span(\mathbf{v})$ is one dimensional. Hence there is a unit length vector $\mathbf{q} \in span(\mathbf{v})$ and $span(\mathbf{q}) = span(\mathbf{v})$. In particular, take

$$\mathbf{q} = \frac{1}{2}\mathbf{v} = \begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix}.$$

The projecter A is then given by:

$$A = \mathbf{q}\mathbf{q}^* = \begin{bmatrix} \sin\theta & -\cos\theta \end{bmatrix} \begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix} = \begin{bmatrix} \sin^2\theta & -\sin\theta\cos\theta \\ -\sin\theta\cos\theta & \cos^2\theta \end{bmatrix}.$$

b) Determine N(A) and R(A).

Answer:

As A is a projector onto $span(\mathbf{v})$ one must have $R(A) = span(\mathbf{v})$ by definition. Because A is an orthogonal projector one also has $R(A)^{\perp} = N(A)$. Notice that for

$$\mathbf{w} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

one has $\mathbf{w} \neq 0$ and $\langle \mathbf{w}, \mathbf{v} \rangle = 0$. So $\mathbf{w} \in R(A)^{\perp} = N(A)$ and is non-trivial. As dim N(A) = 1 (by the rank-nullity theorem for instance) one then has $N(A) = span(\mathbf{w})$. c) Determine a full QR factorization of A.

Answer:

The first column of A is

$$\mathbf{a}_1 = \begin{bmatrix} \sin^2 \theta \\ -\sin \theta \cos \theta \end{bmatrix} = \sin \theta \begin{bmatrix} \sin \theta \\ -\cos \theta \end{bmatrix} = \sin \theta \mathbf{q}_1.$$

Here \mathbf{q}_1 is a unit vector and $span(\mathbf{a}_1) \subset span(\mathbf{q}_1)$. Hence is the correct choice for the QR factorization. In this case $r_{11} = \sin \theta$. We now set

$$r_{12} = \langle \mathbf{q}_1, \mathbf{a}_2 \rangle = -\sin^2 \theta \cos \theta - \cos^3 \theta = -\cos \theta \left(\sin^2 \theta + \cos^2 \theta \right) = -\cos \theta$$

Then with \mathbf{a}_2 the second column of A

$$\hat{\mathbf{q}}_2 = \mathbf{a}_2 - r_{12}\mathbf{q}_1 = 0$$

Thus we just need to pick \mathbf{q}_2 orthogonal to \mathbf{q}_1 and set $r_{22} = 0$ we determined such a \mathbf{q}_2 in b) Hence we have the full QR factorization

$$A = QR = \begin{bmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{bmatrix} \begin{bmatrix} \sin\theta & -\cos\theta \\ 0 & 0 \end{bmatrix}$$

We note that the Q term is unitary (as the columns are orthonormal) and the R term is upper-triangular so this is indeed a QR factorization. **Problem #3.** (20 pts) Let $A, B \in \mathbb{C}^{m \times m}$ suppose that AB = 0 and BA = 0.

a) What, if any, is the relationship between the null space of A and the column space of B? Justify your answer.

Answer:

One has $R(B) \subset N(A)$ as if $\mathbf{v} \in R(B)$ then there is a \mathbf{w} so that $\mathbf{v} = B\mathbf{w}$ and then $A\mathbf{v} = AB\mathbf{w} = 0\mathbf{w} = 0$ and so $\mathbf{v} \in N(A)$. There is no other relationship since for instance if A = 0 and B = I then AB = 0 = BAbut $R(B) = \mathbb{C}^m$ while $R(A) = \{0\}$.

b) Show that either dim $N(A) \ge \frac{m}{2}$ or dim $N(B) \ge \frac{m}{2}$.

Answer:

By part a) we have that $R(B) \subset N(A)$. Hence by the basis extension theorem we have $dim R(B) \leq dim N(A)$. By the rank-nullity theorem applied to $B \ dim R(B) + dim N(B) = m$. Thus,

$$m = dimR(B) + dimN(B) \le dimN(B) + dimN(A)$$

This implies either dim N(B) or dim N(A) is larger than m/2 as claimed.

Problem #4. (30 pts)

a) Suppose that $A, B \in \mathbb{C}^{m \times m}$ are unitary matrices. Verify that A^* and AB are also unitary. (Hint: Use the algebraic properties of the adjoint)

Answer:

Since A is unitary one has $AA^* = I$ taking the adjoint of this implies $(AA^*)^* = I^* = I$. Thus $(A^*)^*A^* = I$ that is $(A^*)^{-1} = (A^*)^*$ which means A^* is unitary. Similarly, $BB^* = I$ so $(AB)^*AB = B^*A^*AB = B^*IB = B^*B = I$ which implies $(AB)^{-1} = (AB)^*$ and so AB is unitary.

b) Let

$$\mathbf{v}_1 = \frac{1}{5} \begin{bmatrix} 3\\0\\-4 \end{bmatrix}, \mathbf{v}_2 = \frac{1}{5} \begin{bmatrix} 4\\0\\3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \in \mathbb{R}^3$$

Verify that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis of \mathbb{R}^3 . Justify your answer.

Answer:

By direct computation one verifies that $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij}$ (i.e. is 1 when i = jand otherwise 0). This implies the set is orthonormal. Any orthogonal set of vectors is automatically linearly independent and as there are three elements in the set and dim $\mathbb{C}^3 = 3$ we must have that the \mathbf{v}_i also span \mathbb{C}^3 and hence are a basis. c) Let

$$\mathbf{w}_1 = \frac{\sqrt{2}}{2} \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, \mathbf{w}_3 = \frac{\sqrt{2}}{2} \begin{bmatrix} -1\\0\\1 \end{bmatrix} \in \mathbb{R}^3$$

be a set of orthonormal vectors. Determine the orthogonal matrix $U \in \mathbb{R}^{3\times 3}$ so that $U\mathbf{v}_i = \mathbf{w}_i$ for i = 1, 2, 3 here the \mathbf{v}_i are given in b). (Hint: Use part a))

Answer:

Let us write

$$V = \begin{bmatrix} \mathbf{v}_1 | & \mathbf{v}_2 | & \mathbf{v}_3 \end{bmatrix}$$
 and $W = \begin{bmatrix} \mathbf{w}_1 | & \mathbf{w}_2 | & \mathbf{w}_3 \end{bmatrix}$.

As both $\{\mathbf{v}_i\}$ and $\{\mathbf{w}_i\}$ are orthonormal bases of \mathbb{C}^3 both V and W are orthogonal matrices. We note that orthogonal and unitary are the same in this context as both matrices have real entries. Then we have

W = UV

 \mathbf{SO}

$$U = WV^{-1} = WV^{\top} (= WV^*)$$

By part a) U is unitary and has real entries so is orthogonal. We compute explicitly

$$U = \begin{bmatrix} 3\sqrt{2}/10 & -\sqrt{2}/2 & -2\sqrt{2}/5 \\ -4/5 & 0 & -3/5 \\ 3\sqrt{2}/10 & \sqrt{2}/2 & -2\sqrt{2}/5 \end{bmatrix}$$