Homework 2

Due Wednesday, October 7, 2009

1. Let A and B be square, invertible matrices. Prove that the inverse of $A B$ is $B^{-1} A^{-1}$.
2. Exercise 1.3, Chapter 1 of Trefethen-Bau.
3. (a) Find a square matrix A, whose entries are not all zeros, such that $A^{2}=0$. (The matrix A^{2} is of course $A A$.)
(b) Exhibit a nonzero vector that belongs to the nullspace of the matrix you just constructed.
(c) In general, prove that if a matrix B satisfies $B^{2}=0$, then it cannot be invertible.
4. If u and v are two vectors such that $\|u\|=3$ and $\|v\|=5$,
(a) what are the smallest and largest values of $\|u-v\|$?
(b) and what are the smallest and largest values of $\langle u, v\rangle$?
5. Exercise 2.1, Chapter 2 of Trefethen-Bau. [A diagonal matrix is a matrix whose off-diagonal elements $(i \neq j)$ are zero.]
