Homework 4

Due Wednesday, November 4, 2009

1. Very simple linear regression. Consider the three points

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad\left[\begin{array}{c}
2 \\
-2
\end{array}\right] .
$$

What is the equation of the line that best fits those three points, in the sense of least squares?
2. Simple linear regression. You have pairs of real-valued data $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ (for instance, x_{i} may be the square footage of a home and y_{i} its sale price). What is the equation of the regression line

$$
y=a+b x
$$

in terms of the x_{i} 's and y_{i} 's? The regression line is the line that best fits the points in a least squares sense, i.e. that minimizes $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.
3. Projections
(a) Check that $A\left(A^{*} A\right)^{-1} A^{*}$ defines an orthogonal projector (assume that $A^{*} A$ is invertible). What does this project onto?
(b) Check that $A^{*}\left(A A^{*}\right)^{-1} A$ also defines an orthogonal projector (assume that $A A^{*}$ is invertible). What does this project onto?
4. Exercise 4.4, Chapter 4 of Trefethen-Bau (justify your answer).
5. Exercise 5.4, Chapter 5 of Trefethen-Bau.

