Math 104

Homework 4

Due Wednesday, November 4, 2009

1. Very simple linear regression. Consider the three points

$$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-2 \end{bmatrix}.$$

What is the equation of the line that best fits those three points, in the sense of least squares?

2. Simple linear regression. You have pairs of real-valued data (x_i, y_i) , i = 1, ..., n (for instance, x_i may be the square footage of a home and y_i its sale price). What is the equation of the regression line

y = a + bx

in terms of the x_i 's and y_i 's? The regression line is the line that best fits the points in a least squares sense, i.e. that minimizes $\sum_{i=1}^{n} (y_i - a - bx_i)^2$.

- 3. Projections
 - (a) Check that $A(A^*A)^{-1}A^*$ defines an orthogonal projector (assume that A^*A is invertible). What does this project onto?
 - (b) Check that $A^*(AA^*)^{-1}A$ also defines an orthogonal projector (assume that AA^* is invertible). What does this project onto?
- 4. Exercise 4.4, Chapter 4 of Trefethen-Bau (justify your answer).
- 5. Exercise 5.4, Chapter 5 of Trefethen-Bau.

Fall 2009