Homework 7

Due Wednesday, December 2, 2009

Do five of the following exercises.

1. If A is an $n \times n$ matrix with characteristic polynomial

$$
P(\lambda)=\left(\lambda-\lambda_{1}\right)^{d_{1}} \ldots\left(\lambda-\lambda_{k}\right)^{d_{k}}
$$

what is the trace of A ? what is the determinant of A ?
2. A skew Hermitian matrix is a matrix obeying $A^{*}=-A$.
(a) Show that $A=U \Lambda U^{*}$, with Λ diagonal and for a unitary U. (Hint: this is not a difficult question and you should think about how you could get back to the case you know; that is, the case where the matrix is Hermitian.)
(b) Show that the eigenvalues are imaginary and the eigenvectors orthogonal.
(c) Show that $A+I$ is invertible.
(d) Show that $(I-A)(I+A)^{-1}$ is an orthogonal matrix.
3. Suppose A is positive semidefinite. Can you a find a square root of this matrix? In other words, can you find a matrix B such that $B^{2}=A$? If yes, explain how you would construct it. If no, explain why no such matrix exists.
4. Suppose you have n vectors x_{1}, \ldots, x_{n} in \mathbb{R}^{m}. In class, we have seen that the first principal component is the unit-normed vector $u \in \mathbb{R}^{m}$ so that the projections of those vectors onto u have maximum variance.
Another way to look at this is as follows: consider a line \mathcal{L} going through some point $x_{0} \in \mathbb{R}^{m}$ and with some orientation $u \in \mathbb{R}^{m},\|u\|=1$ (the equation of this line is $x_{0}+t u$ where t is a scalar). Now consider the line that is closest to the point in the sense that it minimizes

$$
\sum_{i=1}^{n}\left|\operatorname{distance}\left(x_{i}, \mathcal{L}\right)\right|^{2}
$$

(the sum of squares of the distances between the x_{i} 's and the line).
(a) Show that the slope of the closest line is the first principal component.
(b) Show that this line goes through the average vector $\bar{x}=\sum_{i=1}^{n} x_{i}$.
5. Problem 23.1 in Trefethen and Bau. (In this exercise U is the upper triangular factor so that with $L=U^{*}, A^{*} A=U^{*} U=L L^{*}$.)
6. Suppose A is positive semidefinite. Show that the maximum eigenvalue of A, denoted by $\lambda_{\max }$, is given by the so-called Rayleigh quotient

$$
\sup _{w \neq 0} \frac{w^{*} A w}{w^{*} w}
$$

