Solutions Midterm Exam - Jul. 17, 2019

1. (10 points) Evaluate the following limit. You may use any technique as long as you justify your steps.

$$
\lim _{x \rightarrow 0} \frac{(1-\sqrt{1+x}) \sin (-2 x)}{x^{2}}
$$

Observe that, for $x \neq 0,($ and $x>-1)$

$$
\frac{1-\sqrt{1+x}}{x}=\frac{(1-\sqrt{1+x})}{x} \frac{(1+\sqrt{1+x})}{(1+\sqrt{1+x})}=\frac{1-(1+x)}{x(1+\sqrt{1+x})}=\frac{-x}{x(1+\sqrt{1+x})}=-\frac{1}{1+\sqrt{1+x}}
$$

Hence, by the limit laws (alternatively because $\frac{1}{1+\sqrt{1+x}}$ is continuous at $x=0$) we have

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}=-\frac{1}{2} .
$$

If $g(x)=\sin (-2 x)$, then, as $g(0)=0$

$$
\lim _{x \rightarrow 0} \frac{\sin (-2 x)}{x}=\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=g^{\prime}(0)=-2
$$

where we used $g^{\prime}(x)=-2 \cos (2 x)$. Hence, by the product law

$$
\lim _{x \rightarrow 0} \frac{(1-\sqrt{1+x}) \sin (-2 x)}{x^{2}}=\left(\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (-2 x)}{x}\right)=\left(-\frac{1}{2}\right) *(-2)=1 .
$$

2. (10 points) Let f be a function so that $f(2)=-1, f^{\prime}(2)=-1$ and $f^{\prime}(-1)=2$. If

$$
h(x)=f(f(x))-\frac{f(x)}{x^{2}}
$$

determine $h^{\prime}(2)$.

Using the rules of differentiation (namely the chain rule, difference rule and quotient rule) we have

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}\left(f(f(x))-\frac{f(x)}{x^{2}}\right) \\
& =f^{\prime}(f(x)) f^{\prime}(x)-\frac{f^{\prime}(x) x^{2}-2 x f(x)}{x^{4}}
\end{aligned}
$$

Evaluating at $x=2$ gives

$$
h^{\prime}(2)=f^{\prime}(f(2)) f^{\prime}(2)-\frac{4 f^{\prime}(2)-4 f(2)}{16}=-f^{\prime}(-1)-\frac{-1-(-1)}{4}=-2 .
$$

3. (10 points) Use the linearization at $x=1$ to compute the approximate value of $\ln (1.1)$.

Let $L(x)$ be the linearization of $f(x)=\ln (x)$ at $x=1$. By definition we have that $L(x)=$ $f^{\prime}(1)(x-1)+f(1)$. One computes that $f^{\prime}(x)=\frac{1}{x}$ and so $f^{\prime}(1)=1$ while $f(1)=\ln (1)=0$. Hence, $L(x)=(x-1)+0=x-1$. It follows that $\ln (1.1)=f(1.1) \approx L(1.1)=0.1$.
4. (10 points) Consider the curve defined implicitly by $e^{2 y}+x^{2}=2 \cos \left(y^{2}\right)$. Determine the tangent line to this curve at $(x, y)=(1,0)$.

First observe that $e^{2 * 0}+1^{2}=1+1=2=2 \cos \left(0^{2}\right)$ so $(1,0)$ is on the curve. Next we differentiate implicitly and obtain that

$$
\frac{d}{d x}\left(e^{2 y}+x^{2}\right)=\frac{d}{d x}\left(2 \cos \left(y^{2}\right)\right)
$$

evaluating both sides gives

$$
2 e^{2 y} \frac{d y}{d x}+2 x=-4 \sin \left(y^{2}\right) y \frac{d y}{d x} .
$$

Evaluating this expression at $(1,0)$ gives

$$
\left.2 \frac{d y}{d x}\right|_{(1,0)}+2=0
$$

and so

$$
\left.\frac{d y}{d x}\right|_{(1,0)}=-1
$$

That is the slope of the tangent line at $(1,0)$ is -1 . As the tangent line goes through the point $(1,0)$ we have the equation of this line given by

$$
y-0=-1(x-1)
$$

That is $y=1-x$.
5. (10 points) Find a and b so that the line $y=5 x+3$ is tangent to $y=f(x)=x^{3}+a x+b$ at $(-1,-2)$.

In order for $y=5 x+3$ to be the tangent line to $y=f(x)$ at $(-1,-2)$ one must have $-2=f(-1)$ and $5=f^{\prime}(-1)$. That is, the graph of f goes through $(-1,-2)$ and the slope of the tangent line is the slope of the given line. The first equation implies that $-2=(-1)^{3}+a(-1)+b$ and so $b-a=-1$. As $f^{\prime}(x)=3 x^{2}+a$ the second equation implies that $5=3(-1)^{2}+a$ and so $a=2$. Hence, $b=a-1=1$ and so the answer is that $y=x^{3}+2 x+1$ is tangent to $y=5 x+3$ at $(-1,-2)$.
6. Write the correct choice in the space provided. You do not need to show work. No partial credit.
(a) (5 points) What is the largest domain on which $f(x)=\ln \left(e^{-x}-1\right)$ is defined?
A. $(0, \infty)$
B. $(-\infty, \infty)$
C. $\{x \neq 0\}$
D. $(-\infty, 0)$
\qquad
(b) (5 points) Determine the inverse of the function given by $f(x)=4-x^{2}$ on $[-2,0]$.
A. $f^{-1}(y)=\sqrt{4-y}$ with domain $[0,4]$
B. $f^{-1}(y)=-\sqrt{4-y}$ with domain $[0,4]$
C. $f^{-1}(y)=\sqrt{4-y}$ with domain $[-4,0]$
D. $f^{-1}(y)=-\sqrt{4-y}$ with domain $[-4,0]$
(b) $\quad \mathrm{B}$
(c) (5 points) For what value c is $f(x)=\left\{\begin{array}{ll}2 x-c & x<1 \\ c-x^{2} & x \geq 1\end{array}\right.$ continuous at $x=1$?
A. $c=3$
B. $c=\frac{3}{2}$
C. $c=0$
D. $c=-\frac{1}{2}$
(c) $\quad \mathrm{B}$ \qquad
(d) (5 points) Suppose $f:[-5,5] \rightarrow[-5,5]$ is a continuous function for which $f(-1)=2, f(0)=3$ and $f(3)=-1$. In which interval must f have a zero?
A. $[-1,3]$
B. $[-5,0]$
C. $(3,4)$
D. $[1,4]$
(d) \qquad
A \qquad
(e) (5 points) What is $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x^{2}}$?
A. 0
B. 2
C. Does not exist
D. -2
\qquad
(f) (5 points) Which of the following functions is not differentiable at $x=1$?
A. $f(x)=\ln (x)$
B. $f(x)=\frac{x}{1+x^{2}}$
C. $f(x)=\left|x^{2}-1\right|$
D. $f(x)=\ln (\cos (2 \pi x))$
(f) $\quad \mathbf{C}$
(g) (5 points) What is the equation for the tangent line to $y=x^{3}-x^{2}-3$ at $(2, f(2))$?
A. $y=8 x+17$
B. $y=4 x-7$
C. $y=8 x+3$
D. $y=8 x-15$
(g) D
(h) (5 points) What is $\frac{d}{d x} \arctan \left(x^{2}\right)$?
A. $\frac{2 x}{1+x^{2}}$
B. $\frac{2 x}{1+x^{4}}$
C. $\frac{1}{1+x^{4}}$
D. $\frac{2}{1+x^{2}} \arctan (x)$
(h) \qquad
(i) (5 points) For which of the following f does $f^{\prime}(x)=\ln (x)+1$?
A. $f(x)=x \ln (x)+\frac{1}{x}$
B. $f(x)=x^{2} \ln (x)$
C. $f(x)=x+\ln (x)$
D. $f(x)=x \ln (x)+2$
(i) $\quad \mathrm{D}$
(j) (5 points) What is the value of $\frac{d y}{d x}$ at $(1,1)$ of the curve determined implicitly by $x^{3}+2 y^{2}=3$?
A. $-\frac{3}{4}$
B. $\frac{2}{3}$
C. -1
D. $\frac{1}{2}$
6. \qquad

