Mathematic 405, Fall 2015: Assignment #5

Due: Wednesday, March 11th

Instructions: Please ensure that your answers are legible. Also make sure that sufficient steps are shown. Page numbers refer to the course text.

Problem #1. Use the intermediate value theorem to show that if \(p(x) = \sum_{i=1}^{n} a_i x^i \) is a degree \(n \) polynomial (so \(a_n \neq 0 \)) and \(n \) is odd, then \(p \) must have a real zero.

Problem #2. Let \(f : [0, 1] \to [0, 1] \) be continuous. Use the intermediate value theorem to show that \(f \) has at least one fixed point – i.e., a point satisfying \(f(x) = x \).

Problem #3. Show that if \(f : (0, 1) \to \mathbb{R} \) is uniformly continuous, then \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 1^-} f(x) \) both exist. Use this to show that there is a uniformly continuous function \(\hat{f} : [0, 1] \to \mathbb{R} \) with \(\hat{f}(x) = f(x) \) for all \(x \in (0, 1) \). Give an example to show this is not possible if \(f \) is only continuous.

Problem #4. p. 125 # 6

Problem #5. p. 125 # 7

Problem #6. p. 138 # 10

Problem #7. p. 138 # 11

Problem #8. p. 138 # 12

Bonus Problem. (Will not be graded)

Let \(C \subset \mathbb{R} \) be an arbitrary non-empty compact set and suppose \(f : C \to C \) satisfies \(|f(x) - f(y)| \leq \alpha |x - y| \) for all \(x, y \in C \) and some \(\alpha \in (0, 1) \) (in particular \(f \) is Lipschitz). Such a map is an example of a contraction.

a) Show that \(f \) has a fixed point. (Hint: Show that the inductively defined sequence \(a_1 = x_1, a_{n+1} = f(a_n) \) is Cauchy where here \(x_0 \) an arbitrary point of \(C \)).

b) Show that this fixed point is the only fixed point of \(f \).

c) What happens if \(C \) is not compact or \(f \) is merely continuous.