Final Exam Solutions

1. Let $f(x)$ be a continuous function on [a,b] with $f(a)<0<f(b)$.
a. (10 pts) Let x_{0} be such that $f\left(x_{0}\right)>0$. Show that there is a interval of the form $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ such that $f(x) \geq \frac{f\left(x_{0}\right)}{2}$ on $I \cap(a, b)$.

By the uniform continuity of f with $\varepsilon=\frac{f\left(x_{0}\right)}{2}$, there exists $\delta=\delta(\varepsilon)$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ if $x \in I \cap(a, b)$. Hence

$$
f(x) \geq f\left(x_{0}\right)-\varepsilon=\frac{f\left(x_{0}\right)}{2} \quad \text { if } x \in I \cap(a, b) .
$$

b. (10pts) Let $S=\{x \in[a, b]: f(x)>0\}$ and define $c=\inf S$. Show that $f(c)=0$.

S is bounded below so c exists. (Note that S need not be connected but this does not matter.) By the continuity of f, c is a point of \bar{S} so we have $f(c) \geq 0$. If $f(c)>0$ then by the Intermediate value theorem, there is a point $x_{0} \in(a, c)$ where $0<f\left(x_{0}\right)<f(c)$ contradicting the definition of c. Thus $f(c)=0$.
2. (20pts) Let $f(x)$ be a function which is differentiable on ($-1,1$) and continuous on $[-1,1]$. Suppose also that $f^{\prime}(x) \geq 0$ for $x \in(-1,0]$ and $f^{\prime}(x) \leq 0$ for $x \in[0,1)$. Show that $f(x)$ has its global maximum at $x=0$. Justify.

Clearly $f^{\prime}(0)=0$. By the mean value theorem if $x \in[-1,0]$, then $f(x)-f(0)=$ $x f^{\prime}(c) \leq 0$ since $c \in(x, 0)$ so $f^{\prime}(c) \geq 0$. Similarly if $x \in(0,1], f(x)-f(0)=x f^{\prime}(c) \leq 0$ since $f^{\prime}(c) \leq 0$. Hence $f(x)$ has its global max at $x=0$.
3. Let $f(x)$ be defined for $x>0$ by

$$
f(x)=\int_{1}^{x} \frac{d t}{t}
$$

a. (10pts) Compute the formal Taylor series of $f(x)$ about $x=1$.

By the fundamental theorem I (since the integrand $\frac{1}{t}$ is continuous for $t>0$), $f(x)$ is C^{1} and $f^{\prime}(x)=\frac{1}{x}$. Inductively, $f^{(n)}(x)=(-1)^{n-1}(n-1)!x^{-n}$ and $f(1)=0, f^{(n)}(1)=$ $(-1)^{n-1}(n-1)!, n \geq 1$. So formally

$$
f(x)=\sum_{n=1}^{\infty}(-1)^{n-1}(n-1)!\frac{(x-1)^{n}}{n!}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n} .
$$

b. (10pts) Find the radius of convergence of this series and justify.

We have $\frac{1}{R}=\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\lim \sup _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{\frac{1}{n}}=1$ since $\log \frac{1}{R}=\lim _{t \rightarrow 0} t \log t=0$.
4. (20pts) State the Cauchy criterion for Riemann integrability and use it to show that any continuous function f on $[0,1]$ is Riemann integrable. You may state and use any of the basic properties of continuous functions on compact intervals.

The Cauchy criterion states that a function f on $[\mathrm{a}, \mathrm{b}]$ is Riemann integrable if given any $\varepsilon>0$, there is a partition P of $[\mathrm{a}, \mathrm{b}]$ such that $S^{+}(f, P)-S^{-}(f, P) \leq \varepsilon$ where
$S^{+}(f, P)=\sum M_{i}\left(x_{i}-x_{i-1}\right), S^{-}(f, P)=\sum m_{i}\left(x_{i}-x_{i-1}\right), M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f, m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f$.
Let $\varepsilon>0$ be given. Since $f(x)$ is uniformly continuous (a continuous function on a compact set is uniformly continuous), there exists $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta, x, y \in[0,1]$. Choose a partition $x_{i}=\frac{i}{n}, i=0,1, \ldots, n$ with $\frac{1}{n}<\delta$. Then $M_{i}-m_{i}<\varepsilon$ since $x_{i}-x_{i-1}=\frac{1}{n}<\delta$. Hence

$$
S^{+}(f, P)-S^{-}(f, P) \leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)<\varepsilon \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\varepsilon .
$$

Hence f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$.
5a. (10pts) Define what it means for a family of functions \mathcal{F} defined on $[a, b]$ to be equicontinuous.

A family \mathcal{F} of functions defined on a common domain D (usually an interval) is said to be equicontinuous if given $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)$ such that $|f(x)-f(y)|<\varepsilon$ if $|x-y|<\delta$ for all $f \in \mathcal{F}$.
$5 b$. (10pts) Let N be a fixed positive integer and define \mathcal{F} to be the family of all polynomials $p(x)=\sum_{j=0}^{N} c_{j} x^{j}$ where $\left|c_{j}\right| \leq 1$. Show that \mathcal{F} is equicontinuous on any $[\mathrm{a}, \mathrm{b}]$. Hint: What can you say about $\left|p^{\prime}(x)\right|$?

Observe that for any $p(x) \in \mathcal{F},\left|p^{\prime}(x)\right| \leq \sum_{j=1}^{N} j M^{j-1} \leq C$ where C depends only on N, a, b. In particular by the mean value theorem $|p(x)-p(y)| \leq C|x-y| \quad \forall x, y \in[a, b]$. This implies equicontinuity with $\delta=\frac{\varepsilon}{C}$.

6a. (10pts) Define what it means for the series $\sum_{n=1}^{\infty} a_{n}$ to converge.
The series $\sum_{n=1}^{\infty} a_{n}$ converges if the sequence of partial sums $s_{N}=\sum_{n=1}^{N}$ converges.
6b. (10pts) Show that if $a_{n} \geq 0 \forall n$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}^{p}$ converges for all $p>1$.

If $\sum_{n=1}^{\infty} a_{n}$ converges, then necessarily $a_{n} \rightarrow 0$ so we may choose N such that $0 \leq a_{n} \leq \frac{1}{2}$ if $n \geq N$. In particular $0 \leq a_{n}^{p}<a_{n}$ for $n \geq N$. Therefore the series $\sum_{n=1}^{\infty} a_{n}^{p}$ converges since its partial sums (starting with $n=N$) are increasing and bounded.

