Final Exam Solutions

1. Let f(x) be a continuous function on [a,b] with f(a) < 0 < f(b).

a. (10 pts) Let x_0 be such that $f(x_0) > 0$. Show that there is a interval of the form $I = (x_0 - \delta, x_0 + \delta)$ such that $f(x) \ge \frac{f(x_0)}{2}$ on $I \cap (a, b)$.

By the uniform continuity of f with $\varepsilon = \frac{f(x_0)}{2}$, there exists $\delta = \delta(\varepsilon)$ such that $|f(x) - f(x_0)| < \varepsilon$ if $x \in I \cap (a, b)$. Hence

$$f(x) \ge f(x_0) - \varepsilon = \frac{f(x_0)}{2}$$
 if $x \in I \cap (a, b)$.

b. (10pts) Let $S = \{x \in [a, b] : f(x) > 0\}$ and define $c = \inf S$. Show that f(c) = 0.

S is bounded below so c exists. (Note that S need not be connected but this does not matter.) By the continuity of f, c is a point of \overline{S} so we have $f(c) \ge 0$. If f(c) > 0 then by the Intermediate value theorem, there is a point $x_0 \in (a, c)$ where $0 < f(x_0) < f(c)$ contradicting the definition of c. Thus f(c) = 0.

2. (20pts) Let f(x) be a function which is differentiable on (-1,1) and continuous on [-1,1]. Suppose also that $f'(x) \ge 0$ for $x \in (-1,0]$ and $f'(x) \le 0$ for $x \in [0,1)$. Show that f(x) has its global maximum at x = 0. Justify.

Clearly f'(0) = 0. By the mean value theorem if $x \in [-1,0]$, then $f(x) - f(0) = xf'(c) \le 0$ since $c \in (x,0)$ so $f'(c) \ge 0$. Similarly if $x \in (0,1]$, $f(x) - f(0) = xf'(c) \le 0$ since $f'(c) \le 0$. Hence f(x) has its global max at x = 0.

3. Let f(x) be defined for x > 0 by

$$f(x) = \int_1^x \frac{dt}{t} \; .$$

a. (10pts) Compute the formal Taylor series of f(x) about x = 1.

By the fundamental theorem I (since the integrand $\frac{1}{t}$ is continuous for t > 0), f(x) is C^1 and $f'(x) = \frac{1}{x}$. Inductively, $f^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n}$ and f(1) = 0, $f^{(n)}(1) = (-1)^{n-1}(n-1)!$, $n \ge 1$. So formally

$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} (n-1)! \frac{(x-1)^n}{n!} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^n .$$

b. (10pts) Find the radius of convergence of this series and justify.

We have
$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \limsup_{n \to \infty} (\frac{1}{n})^{\frac{1}{n}} = 1$$
 since $\log \frac{1}{R} = \lim_{t \to 0} t \log t = 0$.

4. (20pts) State the Cauchy criterion for Riemann integrability and use it to show that any continuous function f on [0,1] is Riemann integrable. You may state and use any of the basic properties of continuous functions on compact intervals.

The Cauchy criterion states that a function f on [a,b] is Riemann integrable if given any $\varepsilon > 0$, there is a partition P of [a,b] such that $S^+(f, P) - S^-(f, P) \leq \varepsilon$ where

$$S^{+}(f,P) = \sum M_{i}(x_{i}-x_{i-1}), \ S^{-}(f,P) = \sum m_{i}(x_{i}-x_{i-1}), \ M_{i} = \sup_{[x_{i-1},x_{i}]} f, \ m_{i} = \inf_{[x_{i-1},x_{i}]} f$$

Let $\varepsilon > 0$ be given. Since f(x) is uniformly continuous (a continuous function on a compact set is uniformly continuous), there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$, $x, y \in [0, 1]$. Choose a partition $x_i = \frac{i}{n}$, $i = 0, 1, \ldots, n$ with $\frac{1}{n} < \delta$. Then $M_i - m_i < \varepsilon$ since $x_i - x_{i-1} = \frac{1}{n} < \delta$. Hence

$$S^{+}(f,P) - S^{-}(f,P) \le \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}) < \varepsilon \sum_{i=1}^{n} (x_{i} - x_{i-1}) = \varepsilon$$

Hence f is Riemann integrable on [a,b].

5a. (10pts) Define what it means for a family of functions \mathcal{F} defined on [a, b] to be equicontinuous.

A family \mathcal{F} of functions defined on a common domain D (usually an interval) is said to be equicontinuous if given $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon)$ such that $|f(x) - f(y)| < \varepsilon$ if $|x - y| < \delta$ for all $f \in \mathcal{F}$.

5b. (10pts) Let N be a fixed positive integer and define \mathcal{F} to be the family of all polynomials $p(x) = \sum_{j=0}^{N} c_j x^j$ where $|c_j| \leq 1$. Show that \mathcal{F} is equicontinuous on any [a,b]. Hint: What can you say about |p'(x)|?

Observe that for any $p(x) \in \mathcal{F}$, $|p'(x)| \leq \sum_{j=1}^{N} jM^{j-1} \leq C$ where C depends only on N, a, b. In particular by the mean value theorem $|p(x) - p(y)| \leq C|x - y| \quad \forall x, y \in [a, b]$. This implies equicontinuity with $\delta = \frac{\varepsilon}{C}$.

6a. (10pts) Define what it means for the series $\sum_{n=1}^{\infty} a_n$ to converge.

The series $\sum_{n=1}^{\infty} a_n$ converges if the sequence of partial sums $s_N = \sum_{n=1}^{N}$ converges.

6b. (10pts) Show that if $a_n \ge 0 \forall n$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^p$ converges for all p > 1.

If $\sum_{n=1}^{\infty} a_n$ converges, then necessarily $a_n \to 0$ so we may choose N such that $0 \le a_n \le \frac{1}{2}$ if $n \ge N$. In particular $0 \le a_n^p < a_n$ for $n \ge N$. Therefore the series $\sum_{n=1}^{\infty} a_n^p$ converges since its partial sums (starting with n = N) are increasing and bounded.