Midterm 2 Math 405 November 18, 2013

Show all work in a clear, concise and legible style.
Each problem is worth 25 points.

1. Let $f(x)$ be a bounded monotone increasing continuous function on $[a, b)$. Show that f extends to a continuous on $[\mathrm{a}, \mathrm{b}]$ in the following steps:
a. Let $\left\{x_{n}\right\}$ be a sequence converging to b . Show that $L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
b. Now suppose $\left\{y_{n}\right\}$ is another sequence converging to b with $M=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$. Show that $M \leq L$. By symmetry $L \leq M$ and hence $L=M$.
2. Determine the constants k_{1}, k_{2} so that the function
$h(x)= \begin{cases}k_{1} x-5 & \text { if } x<2 \\ 3-k_{2} x^{2} & \text { if } x \geq 2\end{cases}$
is differentiable at $x=2$. Be sure to fully justify.
3. Let f be a twice continuously differentiable (i.e C^{2}) function on \mathbb{R}.
a. State Taylor's theorem about the approximation of $f(x)$ near a point x_{0} by a second order polynomial. Use Taylor's theorem to show that if $f^{\prime \prime}<0$, the graph of $f(x)$ lies on one side (below) its tangent line (the graph of its best linear approximation $l(x)$) in a small neighborhood of any x_{0}.
b. Still assuming that $f^{\prime \prime}<0$, show that the graph of $f(x)$ globally lies under its tangent line.
4. Let $f(x)= \begin{cases}x & \text { if } 0 \leq x<1 \\ 4 & \text { if } x=1 \\ 3-x & \text { if } 1<x \leq 2\end{cases}$

State the Cauchy criterion for Riemann integrability and use it to show that f is Riemann integrable on $[0,2]$. You may use the theorem that a continuous function on a closed interval $[a, b]$ is Riemann integrable.

