Solutions Final Exam - December 11, 2019

1. (a) (10 points) State the Min/Max Theorem (also called the Extreme Value Theorem).

The Min/Max theorem states that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there are $c, d \in[a, b]$ so that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$. That is, f achieves both its maximum and minimum value on the closed bounded interval $[a, b]$.
(b) (5 points) Give an example of a continuous function $f:(-1,1) \rightarrow \mathbb{R}$ that achieves its maximum value, but does not achieve its minimum value.

An example would be $f(x)=1-x^{2}$. This function achieves its maximum value of $1=f(0)$ at $x=0$ but does not achieve a minimum value. This is consistent with a) as the interval is not closed
(c) (15 points) Show that if $f:[0,1] \rightarrow(0,1)$ is continuous, then f is not onto.

As f is continuous and $[0,1]$ is a closed bounded interval, the Min/Max Theorem implies that there is a value $c \in[0,1]$ and a value $d \in[0,1]$ so that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$. That is, $f([0,1]) \subset[f(c), f(d)] \subset(0,1)$. By definition, one has $0<f(c) \leq f(d)<1$ and so there is some element $y \in(0, f(c))$. However, there can be no $x \in[0,1]$ so $f(x)=y$ as one must have $f(x) \geq f(c)>y$. Hence, f cannot be onto.
2. (a) (10 points) State the formal definition of uniform continuity of a function $f:(a, b) \rightarrow \mathbb{R}$.

The given function f is uniformly continuous if, for all $\epsilon>0$, there is a $\delta>0$ so that if $x, y \in(a, b)$ satisfy $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.
(b) (5 points) Give an example of a continuous function $f:(a, b) \rightarrow \mathbb{R}$ that is not bounded. You do not need to justify your answer.

An example with $(a, b)=(0,1)$ is $f(x)=\frac{1}{x}$.
(c) (15 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous, then there is a number M so $|f(x)| \leq M$ for all $x \in(a, b)$. That is, f is bounded.

As f is uniformly continuous, there is a $\delta>0$ so that $x, y \in(a, b)$ with $|x-y|<\delta$ implies $|f(x)-f(y)|<1$. Choose, $N \in \mathbb{N}$ so $\delta N>(b-a)$ and let $x_{i}=a+\frac{b-a}{N+1} i$. Observe $x_{i} \in(a, b)$ for $1 \leq i \leq N$ and $x_{i+1}-x_{i}=\frac{b-a}{N+1}<\delta$. In particular, for every $x \in(a, b)$ there is a $1 \leq j \leq N$ so $\left|x-x_{j}\right|<\delta$. Set $M=\max \left\{\left|f\left(x_{1}\right)\right|, \ldots,\left|f\left(x_{N}\right)\right|\right\}+1$.
As already observed, for any $x \in(a, b)$ there is a $1 \leq j \leq N$ so $\left|x-x_{j}\right|<\delta$. Using the reverse triangle inequality this gives

$$
|f(x)|=\left|f(x)-f\left(x_{j}\right)+f\left(x_{j}\right)\right| \leq\left|f(x)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)\right| \leq 1+\left|f\left(x_{j}\right)\right| \leq M
$$

This proves the claim.
3. (a) (5 points) State the definition of a function $f:(a, b) \rightarrow \mathbb{R}$ being strictly increasing on (a, b).

The function f is strictly increasing if $x, y \in(a, b)$ with $x<y$ satisfies $f(x)<f(y)$.
(b) (10 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)>0$ for all $x \in(a, b)$, then f is strictly increasing on (a, b).

Pick $x, y \in(a, b)$ with $x<y$. By the mean value theorem applied to $[x, y] \subset(a, b)$, there is a $c \in(x, y)$ so that $f(y)-f(x)=f^{\prime}(c)(y-x)$. As $f^{\prime}(c)>0$ and $y-x>0$ one concludes that $f(y)-f(x)>0$. That is $f(y)>f(x)$. This means that f is strictly increasing.
(c) (10 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is strictly increasing and $c \in(a, b)$, then $\lim _{x \rightarrow c_{-}} f(x)$ and $\lim _{x \rightarrow c_{+}} f(x)$ both exist and satisfy $\lim _{x \rightarrow c_{-}} f(x) \leq f(c) \leq \lim _{x \rightarrow c_{+}} f(x)$.

Set $S_{-}=\{f(x): x \in(a, c)\}$. We observe that S_{-}is a non-empty set with upper bound $f(c)$. This is because there are $y \in(a, c)$ and the monotonicity of f implies $f(y)<f(c)$. By the least upper bound property of \mathbb{R}, this means there is a value $L_{-}=\sup S_{-} \leq f(c)$. We claim $\lim _{x \rightarrow c^{-}} f(x)=L_{-}$. Indeed, given $\epsilon>0$, the definition of least upper bound implies there is a $y \in S_{-}$with $f(y)>L_{-}-\epsilon$. The fact that f is strictly increasing implies that for $x \in(y, c)$ one has $L_{-}-\epsilon<f(y)<f(x)<f(c)$. That is if we set $\delta=c-y>0$ then for any x so that $x<c$ and $0<|x-c|<\delta$ one has $\left|f(x)-L_{-}\right|<\epsilon$. That means $\lim _{x \rightarrow c^{-}} f(x)=L_{-} \leq f(c)$. A similar argument proves that $\lim _{x \rightarrow c^{+}} f(x)$ exists and is greater than or equal to $f(c)$.
(d) (10 points) Show that if $g:(a, b) \rightarrow \mathbb{R}$ is differentiable and $g^{\prime}:(a, b) \rightarrow \mathbb{R}$ is strictly increasing, then g^{\prime} is continuous. (Hint: Recall, the derivative of a differentiable function has the intermediate value property).

By a theorem of Darboux, g^{\prime} has the intermediate value property on any interval $\left[a^{\prime}, b^{\prime}\right] \subset$ (a, b). Given a $c \in(a, b)$ observe that, by the previous problem $\lim _{x \rightarrow c^{-}} g^{\prime}(x)=L_{-}$and $\lim _{x \rightarrow c^{+}} g^{\prime}(x)=L_{+}$both exist and satisfy $\lim _{x \rightarrow c^{-}} g^{\prime}(x) \leq f(c) \leq \lim _{x \rightarrow c^{+}} g^{\prime}(x)$. We claim $\lim _{x \rightarrow c^{-}} g^{\prime}(x)=g^{\prime}(c)=\lim _{x \rightarrow c^{+}} g^{\prime}(x)$. To see this observe, that if $L_{-}<g^{\prime}(c)$, then any $d \in(a, c)$, and $y \in\left(L_{-}, g^{\prime}(c)\right)$ the intermediate value property of g^{\prime} applied to $[d, c]$ implies there is an $x \in(d, c)$ so $g^{\prime}(x)=y$. However, as g^{\prime} is strictly increasing and $a<x<c$ one must have $g^{\prime}(x) \leq L_{-}$. This contradicts $g^{\prime}(x)>L_{-}$and so one must have $L_{-}=g^{\prime}(c)$. A similar argument shows $L_{+}=g^{\prime}(c)$.
Hence, $\lim _{x \rightarrow c} g^{\prime}(x)$ exists and equals $g^{\prime}(c)$. That is, g^{\prime} is continuous at c and so g^{\prime} is a continuous function.
4. (a) (10 points) Show that if $f:[a, b] \rightarrow[0,1]$ satisfies $f(x)=0$ for all $x \in[a, b] \cap \mathbb{Q}$, then

$$
\int_{a}^{b} f(x) d x=0 .
$$

That is the lower Darboux integral of f vanishes.
For any partition $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$, we observe that as $f(x) \geq 0$ one has $m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \geq 0$. However, as the rationals are dense, one must have $\left[x_{i-1} \cap x_{i}\right] \cap \mathbb{Q} \neq$ \emptyset. In particular, there is a $y \in\left[x_{i-1}, x_{i}\right]$ so $f(y)=0$. It follows that $m_{i} \leq 0$ and so $m_{i}=0$. Hence,

$$
L(P, f)=\sum_{i=1}^{n} m_{i} \Delta_{i}=0
$$

and so

$$
\int_{a}^{b} f(x) d x=\sup \{L(P, f): P \text { a partition }\}=0 .
$$

(b) (5 points) Give an example of a discontinuous function $f:[0,1] \rightarrow \mathbb{R}$ that is Riemann integrable.

The function $f(x)=\left\{\begin{array}{cc}1 & x \in[0,1) \\ 0 & x=1\end{array}\right.$ is discontinuous at $x=1$. However, this is the only discontinuity and so f is Riemann integrable.
(c) (20 points) Let $f:(a, b) \rightarrow \mathbb{R}$ be uniformly continuous. Show directly from definitions that if $g:[a, b] \rightarrow \mathbb{R}$ satisfies $g(x)=f(x)$ for $x \in(a, b)$, then g is Riemann integrable.

As f is uniformly continuous on the interval (a, b), it is bounded by some value M_{0} as shown (for instance) in a previous question. Set $M=\max \left\{M_{0},|g(a)|,|g(b)|\right\}$ one clearly has $|g(x)| \leq$ M for all $x \in[a, b]$ and so g is bounded. In particular, it is enough to show that

$$
\int_{a}^{b} g(x) d x=\int_{a}^{b} g(x) d x
$$

That is, to show for any $\epsilon>0$ that there is a partition $P=P_{\epsilon}$ so that

$$
0 \leq \int_{a}^{b} g(x) d x-\int_{a}^{b} g(x) d x \leq U(P, f)-L(P, f) \leq \epsilon
$$

To that end, observe that, as f is uniformly continuous, for any $\epsilon>0$, there is a $\delta>0$ so that $x, y \in(a, b)$ with $|x-y|<\delta$ implies

$$
|f(x)-f(y)|<\frac{\epsilon}{b-a}
$$

Now pick a partition $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}=b\right\}$ of $[a, b]$ chosen so $\Delta_{i}<$ $\min \left\{\delta, \frac{\epsilon}{4 M}\right\}$. Set $M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} g(x)$ and $m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} g(x)$. For $2 \leq i \leq n$, the definition of f ensures that $M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)$ and $m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)$ and so, by the uniform continuity of f and fact that $x_{i}-x_{i-1}<\delta$, when $2 \leq i \leq n$ one has $M_{i}-m_{i} \leq \frac{\epsilon}{b-a}$. One readily uses the bound on g to see that $M_{1}-m_{1} \leq 2 M$ and $M_{n+1}-M_{n+1} \leq 2 M$. Hence,

$$
U(P, f)-L(P, f)=\sum_{i=1}^{n+1}\left(M_{i}-m_{i}\right) \Delta_{i} \leq 2 M \Delta_{1}+2 M \Delta_{n+1}+\frac{\epsilon}{b-a}\left(x_{n}-x_{1}\right) \leq \epsilon
$$

As ϵ is arbitrary, the claim is proved.
5. (a) (15 points) State both versions of the Fundamental Theorem of Calculus.

The first version of the fundamental theorem of calculus states that if $F:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b) and there is a $f:[a, b] \rightarrow \mathbb{R}$ that is Riemann integrable and so $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$, then

$$
F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

The second version states that if $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $F(x)=\int_{a}^{x} f(t) d t$, then F is continuous. Moreover, if f is continuous at $c \in(a, b)$, then F is differentiable at c and $F^{\prime}(c)=f(c)$.
(b) (5 points) Give an example of a function $f:[-1,1] \rightarrow \mathbb{R}$ that is Riemann integrable, but $F(x)=$ $\int_{0}^{x} f(t) d t$ is not differentiable at $x=0$.

Consider the function

$$
f(x)=\left\{\begin{array}{cc}
-1 & x \in[-1,0] \\
1 & x \in(0,1]
\end{array}\right.
$$

This function has only one discontinuity (at $x=0$) so is Riemann integrable. One verfies that $F(x)=|x|$ and so F is not differentiable at $x=0$.
(c) (15 points) Show that if $f:(-1,1) \rightarrow \mathbb{R}$ is C^{1} with $f(0)=0$ and $f^{\prime}(x) \geq 2|x|$, then $|f(x)| \geq x^{2}$ for all $x \in(-1,1)$.

First observe that there is nothing to show when $x=0$. We treat two case $x \in(0,1)$ and $x \in(-1,0)$. In the first case, the hypotheses on f (namely that it is C^{1}) allow us to apply the first version of the fundamental theorem of calculus to conclude that

$$
|f(x)| \geq f(x)=f(x)-f(0)=\int_{0}^{x} f^{\prime}(t) d t \geq \int_{0}^{x} 2 t=\int_{0}^{2} \frac{d}{d t}\left(t^{2}\right) d t=x^{2}
$$

In a similar, fashion, when $x \in(-2,0)$ one has

$$
|f(x)| \geq-f(x)=f(0)-f(x)=\int_{x}^{0} f^{\prime}(t) d t \geq \int_{x}^{0}(-2 t) d t=\int_{x}^{0} \frac{d}{d t}\left(-t^{2}\right) d t=x^{2}
$$

Putting these together prove te claim.
6. (a) (10 points) State the definition of a sequence of functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ uniformly converging to $f:[a, b] \rightarrow \mathbb{R}$.

The sequence converges uniformly on $[a, b]$ if, for all $\epsilon>0$, there is an $N \in \mathbb{N}$ so that if $n \geq N$, then $\sup _{x \in[a, b]}\left|f(x)-f_{n}(x)\right|<\epsilon$.
(b) (5 points) Give an example of a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ so that f_{n} converges pointwise to $f:[0,1] \rightarrow \mathbb{R}$ but not uniformly.

An example is given by $f_{n}(x)=x^{n}$. One has $\lim _{n \rightarrow \infty} x^{n}=0$ if $x \in[0,1)$ while $\lim _{n \rightarrow \infty} x^{n}=1$ for $x=1$ and so f_{n} converge pointwise to the function

$$
f(x)=\left\{\begin{array}{cc}
0 & x \in[0,1) \\
1 & x=1
\end{array}\right.
$$

However, the convergence cannot be uniform (as for instance the uniform limit of continuous functions is continuous and f is not.)
(c) (20 points) Prove that if $f_{n}:[a, b] \rightarrow \mathbb{R}$ are continuous and the f_{n} converge uniformly to f : $[a, b] \rightarrow \mathbb{R}$, then f is continuous.

Fix an $\epsilon>0$. As $f_{n} \rightarrow f$ uniformly, there is an $N \in \mathbb{N}$ so that for $n \geq N$, $\sup _{x \in[a, b]} \mid f(x)-$ $f_{n}(x) \mid<\epsilon / 3$. Now fix an $c \in[a, b]$. As f_{N} is continuous, there is a $\delta>0$ so for all $x \in[a, b]$ with $|x-c|<\delta$ one has $\left|f_{N}(x)-f_{N}(c)\right|<\epsilon / 3$. Using the triangle inequality, one then concludes that, for $x \in[a, b]$ with $|x-c|<\delta$, one has

$$
\begin{aligned}
|f(x)-f(c)| & =\left|f(x)-f_{N}(x)+f_{N}(x)-f_{N}(c)+f_{N}(c)-f(c)\right| \\
& \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(c)\right|+\left|f_{N}(c)-f(c)\right| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
\end{aligned}
$$

That is, f is continuous at $x=c$. As c is arbitrary, one concludes that f is continuous.

