
Solutions Final Exam — December 11, 2019

1. (a) (10 points) State the Min/Max Theorem (also called the Extreme Value Theorem).

The Min/Max theorem states that if f : [a, b]→ R is continuous, then there are c, d ∈ [a, b] so
that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b]. That is, f achieves both its maximum and minimum
value on the closed bounded interval [a, b].

(b) (5 points) Give an example of a continuous function f : (−1, 1)→ R that achieves its maximum
value, but does not achieve its minimum value.

An example would be f(x) = 1 − x2. This function achieves its maximum value of 1 = f(0)
at x = 0 but does not achieve a minimum value. This is consistent with a) as the interval is
not closed
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(c) (15 points) Show that if f : [0, 1]→ (0, 1) is continuous, then f is not onto.

As f is continuous and [0, 1] is a closed bounded interval, the Min/Max Theorem implies that
there is a value c ∈ [0, 1] and a value d ∈ [0, 1] so that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].
That is, f([0, 1]) ⊂ [f(c), f(d)] ⊂ (0, 1). By definition, one has 0 < f(c) ≤ f(d) < 1 and so
there is some element y ∈ (0, f(c)). However, there can be no x ∈ [0, 1] so f(x) = y as one
must have f(x) ≥ f(c) > y. Hence, f cannot be onto.
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2. (a) (10 points) State the formal definition of uniform continuity of a function f : (a, b)→ R.

The given function f is uniformly continuous if, for all ε > 0, there is a δ > 0 so that if
x, y ∈ (a, b) satisfy |x− y| < δ, then |f(x)− f(y)| < ε.

(b) (5 points) Give an example of a continuous function f : (a, b)→ R that is not bounded. You do
not need to justify your answer.

An example with (a, b) = (0, 1) is f(x) = 1
x .
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(c) (15 points) Show that if f : (a, b) → R is uniformly continuous, then there is a number M so
|f(x)| ≤M for all x ∈ (a, b). That is, f is bounded.

As f is uniformly continuous, there is a δ > 0 so that x, y ∈ (a, b) with |x − y| < δ implies
|f(x)− f(y)| < 1. Choose, N ∈ N so δN > (b− a) and let xi = a+ b−a

N+1 i. Observe xi ∈ (a, b)

for 1 ≤ i ≤ N and xi+1−xi = b−a
N+1 < δ. In particular, for every x ∈ (a, b) there is a 1 ≤ j ≤ N

so |x− xj | < δ. Set M = max {|f(x1)|, . . . , |f(xN )|}+ 1.

As already observed, for any x ∈ (a, b) there is a 1 ≤ j ≤ N so |x−xj | < δ. Using the reverse
triangle inequality this gives

|f(x)| = |f(x)− f(xj) + f(xj)| ≤ |f(x)− f(xj)|+ |f(xj)| ≤ 1 + |f(xj)| ≤M

This proves the claim.
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3. (a) (5 points) State the definition of a function f : (a, b)→ R being strictly increasing on (a, b).

The function f is strictly increasing if x, y ∈ (a, b) with x < y satisfies f(x) < f(y).

(b) (10 points) Show that if f : (a, b) → R is differentiable and f ′(x) > 0 for all x ∈ (a, b), then f is
strictly increasing on (a, b).

Pick x, y ∈ (a, b) with x < y. By the mean value theorem applied to [x, y] ⊂ (a, b), there is a
c ∈ (x, y) so that f(y)− f(x) = f ′(c)(y − x). As f ′(c) > 0 and y − x > 0 one concludes that
f(y)− f(x) > 0. That is f(y) > f(x). This means that f is strictly increasing.
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(c) (10 points) Show that if f : (a, b)→ R is strictly increasing and c ∈ (a, b), then limx→c− f(x) and
limx→c+ f(x) both exist and satisfy limx→c− f(x) ≤ f(c) ≤ limx→c+ f(x).

Set S− = {f(x) : x ∈ (a, c)}. We observe that S− is a non-empty set with upper bound f(c).
This is because there are y ∈ (a, c) and the monotonicity of f implies f(y) < f(c). By the
least upper bound property of R, this means there is a value L− = supS− ≤ f(c). We claim
limx→c− f(x) = L−. Indeed, given ε > 0, the definition of least upper bound implies there is
a y ∈ S− with f(y) > L− − ε. The fact that f is strictly increasing implies that for x ∈ (y, c)
one has L− − ε < f(y) < f(x) < f(c). That is if we set δ = c− y > 0 then for any x so that
x < c and 0 < |x − c| < δ one has |f(x) − L−| < ε. That means limx→c− f(x) = L− ≤ f(c).
A similar argument proves that limx→c+ f(x) exists and is greater than or equal to f(c).

(d) (10 points) Show that if g : (a, b) → R is differentiable and g′ : (a, b) → R is strictly increasing,
then g′ is continuous. (Hint: Recall, the derivative of a differentiable function has the intermediate
value property).

By a theorem of Darboux, g′ has the intermediate value property on any interval [a′, b′] ⊂
(a, b). Given a c ∈ (a, b) observe that, by the previous problem limx→c− g

′(x) = L− and
limx→c+ g

′(x) = L+ both exist and satisfy limx→c− g
′(x) ≤ f(c) ≤ limx→c+ g

′(x). We claim
limx→c− g

′(x) = g′(c) = limx→c+ g
′(x). To see this observe, that if L− < g′(c), then any

d ∈ (a, c), and y ∈ (L−, g
′(c)) the intermediate value property of g′ applied to [d, c] implies

there is an x ∈ (d, c) so g′(x) = y. However, as g′ is strictly increasing and a < x < c one
must have g′(x) ≤ L−. This contradicts g′(x) > L− and so one must have L− = g′(c). A
similar argument shows L+ = g′(c).

Hence, limx→c g
′(x) exists and equals g′(c). That is, g′ is continuous at c and so g′ is a

continuous function.
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4. (a) (10 points) Show that if f : [a, b]→ [0, 1] satisfies f(x) = 0 for all x ∈ [a, b] ∩Q, then∫ b

a
f(x)dx = 0.

That is the lower Darboux integral of f vanishes.

For any partition P = {a = x0 < x1 < · · · < xn = b}, we observe that as f(x) ≥ 0 one has
mi = infx∈[xi−1,xi] f(x) ≥ 0. However, as the rationals are dense, one must have [xi−1∩xi]∩Q 6=
∅. In particular, there is a y ∈ [xi−1, xi] so f(y) = 0. It follows that mi ≤ 0 and so mi = 0.
Hence,

L(P, f) =
n∑
i=1

mi∆i = 0

and so ∫ b

a
f(x)dx = sup {L(P, f) : P a partition} = 0.

(b) (5 points) Give an example of a discontinuous function f : [0, 1]→ R that is Riemann integrable.

The function f(x) =

{
1 x ∈ [0, 1)
0 x = 1

is discontinuous at x = 1. However, this is the only

discontinuity and so f is Riemann integrable.
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(c) (20 points) Let f : (a, b) → R be uniformly continuous. Show directly from definitions that if
g : [a, b]→ R satisfies g(x) = f(x) for x ∈ (a, b), then g is Riemann integrable.

As f is uniformly continuous on the interval (a, b), it is bounded by some value M0 as shown
(for instance) in a previous question. Set M = max {M0, |g(a)|, |g(b)|} one clearly has |g(x)| ≤
M for all x ∈ [a, b] and so g is bounded. In particular, it is enough to show that∫ b

a
g(x)dx =

∫ b

a
g(x)dx

That is, to show for any ε > 0 that there is a partition P = Pε so that

0 ≤
∫ b

a
g(x)dx−

∫ b

a
g(x)dx ≤ U(P, f)− L(P, f) ≤ ε.

To that end, observe that, as f is uniformly continuous, for any ε > 0, there is a δ > 0 so that
x, y ∈ (a, b) with |x− y| < δ implies

|f(x)− f(y)| < ε

b− a
.

Now pick a partition P = {a = x0 < x1 < . . . < xn < xn+1 = b} of [a, b] chosen so ∆i <
min

{
δ, ε

4M

}
. Set Mi = supx∈[xi−1,xi] g(x) and mi = infx∈[xi−1,xi] g(x). For 2 ≤ i ≤ n, the

definition of f ensures that Mi = supx∈[xi−1,xi] f(x) and mi = infx∈[xi−1,xi] f(x) and so, by the
uniform continuity of f and fact that xi − xi−1 < δ, when 2 ≤ i ≤ n one has Mi −mi ≤ ε

b−a .

One readily uses the bound on g to see that M1−m1 ≤ 2M and Mn+1−Mn+1 ≤ 2M . Hence,

U(P, f)− L(P, f) =

n+1∑
i=1

(Mi −mi)∆i ≤ 2M∆1 + 2M∆n+1 +
ε

b− a
(xn − x1) ≤ ε.

As ε is arbitrary, the claim is proved.
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5. (a) (15 points) State both versions of the Fundamental Theorem of Calculus.

The first version of the fundamental theorem of calculus states that ifF : [a, b]→ R is contin-
uous and differentiable on (a, b) and there is a f : [a, b] → R that is Riemann integrable and
so F ′(x) = f(x) for all x ∈ (a, b), then

F (b)− F (a) =

∫ b

a
f(x)dx.

The second version states that if f : [a, b] → R is Riemann integrable and F (x) =
∫ x
a f(t)dt,

then F is continuous. Moreover, if f is continuous at c ∈ (a, b), then F is differentiable at c
and F ′(c) = f(c).

(b) (5 points) Give an example of a function f : [−1, 1]→ R that is Riemann integrable, but F (x) =∫ x
0 f(t)dt is not differentiable at x = 0.

Consider the function

f(x) =

{
−1 x ∈ [−1, 0]
1 x ∈ (0, 1]

This function has only one discontinuity (at x = 0) so is Riemann integrable. One verfies that
F (x) = |x| and so F is not differentiable at x = 0.
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(c) (15 points) Show that if f : (−1, 1) → R is C1 with f(0) = 0 and f ′(x) ≥ 2|x|, then |f(x)| ≥ x2

for all x ∈ (−1, 1).

First observe that there is nothing to show when x = 0. We treat two case x ∈ (0, 1) and
x ∈ (−1, 0). In the first case, the hypotheses on f (namely that it is C1) allow us to apply
the first version of the fundamental theorem of calculus to conclude that

|f(x)| ≥ f(x) = f(x)− f(0) =

∫ x

0
f ′(t)dt ≥

∫ x

0
2t =

∫ 2

0

d

dt
(t2)dt = x2.

In a similar, fashion, when x ∈ (−2, 0) one has

|f(x)| ≥ −f(x) = f(0)− f(x) =

∫ 0

x
f ′(t)dt ≥

∫ 0

x
(−2t)dt =

∫ 0

x

d

dt
(−t2)dt = x2.

Putting these together prove te claim.
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6. (a) (10 points) State the definition of a sequence of functions fn : [a, b]→ R uniformly converging to
f : [a, b]→ R.

The sequence converges uniformly on [a, b] if, for all ε > 0, there is an N ∈ N so that if n ≥ N ,
then supx∈[a,b] |f(x)− fn(x)| < ε.

(b) (5 points) Give an example of a sequence of functions fn : [0, 1] → R so that fn converges
pointwise to f : [0, 1]→ R but not uniformly.

An example is given by fn(x) = xn. One has limn→∞ x
n = 0 if x ∈ [0, 1) while limn→∞ x

n = 1
for x = 1 and so fn converge pointwise to the function

f(x) =

{
0 x ∈ [0, 1)
1 x = 1

However, the convergence cannot be uniform (as for instance the uniform limit of continuous
functions is continuous and f is not.)
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(c) (20 points) Prove that if fn : [a, b] → R are continuous and the fn converge uniformly to f :
[a, b]→ R, then f is continuous.

Fix an ε > 0. As fn → f uniformly, there is an N ∈ N so that for n ≥ N , supx∈[a,b] |f(x) −
fn(x)| < ε/3. Now fix an c ∈ [a, b]. As fN is continuous, there is a δ > 0 so for all x ∈ [a, b]
with |x − c| < δ one has |fN (x) − fN (c)| < ε/3. Using the triangle inequality, one then
concludes that, for x ∈ [a, b] with |x− c| < δ, one has

|f(x)− f(c)| = |f(x)− fN (x) + fN (x)− fN (c) + fN (c)− f(c)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (c)|+ |fN (c)− f(c)|

<
ε

3
+
ε

3
+
ε

3
= ε.

That is, f is continuous at x = c. As c is arbitrary, one concludes that f is continuous.


