Solutions Final Exam - May. 14, 2014

1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example).
(a) (10 points) There exist open intervals I_{n} with $I_{n+1} \subset I_{n}$ so that $\cap_{n=1}^{\infty} I_{n}=\emptyset$.

True. Let $I_{n}=(0,1 / n)$. If $z \in \cap_{n=1}^{\infty} I_{n}$, then $0<z<\frac{1}{n}$ for all n, which violates the Archimedean principle.
(b) (10 points) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous and $\left\{x_{n}\right\}$ is Cauchy, then $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.

True. Given $\epsilon>0$, use the uniform continuity of f to pick $\delta>0$ so that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$. Now use the Cauchy property of $\left\{x_{n}\right\}$ to pick an N so that if $N<m, n$, then $\left|x_{m}-x_{n}\right|<\delta$. Hence, if $N<m, n$, then $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\epsilon$, i.e., $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
(c) (10 points) If $f:(a, b) \rightarrow \mathbb{R}$ is C^{1} and strictly increasing, then $f^{\prime}(x)>0$ for each $x \in(a, b)$.

False. Let $(a, b)=(-1,1)$ and $f(x)=x^{3}$, then $x<y$ implies $f(x)<f(y)$, but $f^{\prime}(0)=0$.
(d) (10 points) If $f:(-1,1) \rightarrow \mathbb{R}$ is C^{2} with $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=2$, then there is an interval I containing 0 so that $f(x) \geq 0$ for $x \in I$.

True. By Taylor's theorem $f(x)=\frac{1}{2} f^{\prime \prime}(0) x^{2}+o\left(x^{2}\right)=x^{2}+o\left(x^{2}\right)$. Choose, $\epsilon>0$ so that if $|x|<\epsilon$, then $\left|f(x)-x^{2}\right|<\frac{1}{2}|x|^{2}$. By the triangle inequality this means that $f(x)>\frac{1}{2}|x|^{2} \geq 0$ for $x \in(-\epsilon, \epsilon)$.
(e) (10 points) If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.

False. Let $a_{n}=\frac{1}{n}$, this series has $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and $\sum_{n=1}^{\infty} a_{n}=\infty$.
(f) (10 points) There is a sequence of continuous functions $f_{n}:[-1,1] \rightarrow \mathbb{R}$ converging uniformly to the function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\left\{\begin{array}{cc}-1 & x \leq 0 \\ 1 & x>0\end{array}\right.$.

False. For f to be the uniform limit of continuous functions, it must itself be continuous. The given f is not continuous as $\lim _{x \rightarrow 0} f(x)$ does not exist.
(g) (10 points) If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, then for all bijections $m: \mathbb{N} \rightarrow \mathbb{N}$ the series $\sum_{n=1}^{\infty} a_{m(n)}$ is convergent and $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{m(n)}$.

False. If the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$ convergent. However, there is a rearrangement $m: \mathbb{N} \rightarrow \mathbb{N}$ so that $\sum_{n=1}^{\infty}(-1)^{m(n)} \frac{1}{m(n)}$ diverges to infinity.
(h) (10 points) Let $f:[0,1] \rightarrow \mathbb{R}$ be Riemann integrable. If $f(q)=0$ for all rational numbers $q \in[0,1]$, then $\int_{0}^{1} f(x) d x=0$.

True. Consider partitions $P_{n}=\left\{0<\frac{1}{n}<\cdots<\frac{k}{n}<\cdots<1\right\}$. Then $\left|P_{n}\right| \rightarrow 0$, and so $S\left(f, P_{n}, A\right) \rightarrow \int_{0}^{1} f(x) d x$ for any choice of A, picking A to be the left endpoints, we see that $S\left(f, P_{n}, A\right)=0$ and so $\int_{0}^{1} f(x) d x=0$.
2. (a) (10 points) State the intermediate value theorem.

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous with $f(a)<f(b)$, then for every $y \in[f(a), f(b)]$, there is an $x \in[a, b]$ so that $y=f(x)$.
(b) (15 points) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $I \subset \mathbb{R}$ is a compact interval, then $f(I)$ is compact interval.

Write $I=[a, b]$. Set $M=\sup _{I} f(x)$ and $m=\inf _{I} f(x)$. As I is compact and f continuous, there are $x, y \in I$ with $f(x)=m$ and $f(y)=M$. Hence, $M, m \in \mathbb{R}$. We have $\{m, M\} \subset$ $f(I) \subset[m, M]$ and so if $m=M$ we have nothing to prove. If $m<M$, then either $x<y$ or $y<x$. WLOG we assume $x<y$. For any $z \in(m, M)$ there is a $z^{\prime} \in(x, y) \subset I$ with $f\left(z^{\prime}\right)=z$. This implies that $f(I) \supset[m, M]$, that is $f(I)=[m, M]$.
3. (a) (10 points) State the mean value theorem.

Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. For $a<x<y<b$, there is a $z \in(x, y)$ so that $f^{\prime}(z)=\frac{f(y)-f(x)}{y-x}$.
(b) (15 points) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \geq x$, then $f(x) \leq f(0)+\frac{1}{2} x^{2}$ when $x \leq 0$.

Consider the function $g(x)=f(x)-f(0)-\frac{1}{2} x^{2}$. This function is also differentiable as $f(0)+\frac{1}{2} x^{2}$ is. One computes that $g^{\prime}(x)=f^{\prime}(x)-x>0$, so g is non-decreasing. Moreover, $g(0)=0$. Hence, $g(x) \leq 0$ for $x \leq 0$. Which proves the claim.
4. (a) (10 points) State one of the (equivalent) definitions of a function $f:[a, b] \rightarrow \mathbb{R}$ being Riemann integrable.
f is Riemann integrable if it is bounded and for every $\epsilon>0$, there is a $\delta>0$, so that if P is a partition with $|P|<\delta$, then $O s c(f, P)=S^{+}(f, P)-S^{-}(f, P)<\epsilon$.
(b) (10 points) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ which is not Riemann integrable. You do not need to justify this.

Consider Dirichlet's function $f(x)=\left\{\begin{array}{cc}1 & x \text { rational } \\ 0 & x \text { irrational }\end{array}\right.$
(c) (15 points) Using the definition from a), show that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then it is Riemann integrable.

As f is continuous and $[a, b]$ is compact, f is uniformly continuous and is bounded. Using the uniform continuity of f, given an $\epsilon>0$, pick $\delta>0$ so that $|x-y|<\delta$ implies $\mid f(x)-$ $f(y) \left\lvert\,<\frac{\epsilon}{b-a}\right.$. For any partition, $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ we have $S^{+}(f, P)=$ $\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)$ where $M_{i}=\sup _{\left[x_{i-1}, x_{i}\right] f(x)}$ and $S^{-}(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)$ where $m_{i}=\inf _{\left[x_{i-1}, x_{i}\right] f(x)}$. By the continuity of f and compactness of $\left[x_{i-1}, x_{i}\right]$ we have $M_{i}=f\left(a_{i}\right)$ and $m_{i}=f\left(b_{i}\right)$. Hence, if $|P|<\delta$, then $\operatorname{Osc}(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)<\epsilon$ as $\left|a_{i}-b_{i}\right|<\delta$.
5. Let $f: D \rightarrow \mathbb{R}$ be a function.
(a) (10 points) State the definition of f being (real) analytic.
f is real analytic, if D is open and for every $x_{0} \in D$, there is a power series $\sum_{n=0}^{\infty} a_{n}\left(x_{0}\right)(x-$ $\left.x_{0}\right)^{n}$ with positive radius of converge and so that $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}\right)\left(x-x_{0}\right)^{n}$ in a neighborhood of x_{0}.
(b) (10 points) Give an example of a function f that is infinitely differentiable (i.e. of class C^{∞}) but that is not real analytic. You do not need to justify your answer.

Let $f(x)=\left\{\begin{array}{cc}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{array}\right.$. This function is infinitely differentiable, but is not real analytic as f does not agree with any powerseries near $x=0$.
(c) (15 points) Show that if D is an interval, f is real analytic and $f(x)=0$ for all $x \in I$ for $I \subset D$ an open interval, then $f(x)=0$ for all $x \in D$.
Hint: Consider the maximum interval containing I on which f vanishes. Using the Taylor polynomials at the endpoints prove this interval is D.

Set $D=(a, b)$ and $I=(c, d)$. Let $z_{-}=\inf \{x: f(z)=0$ for all $z \in(x, d)\}$ and set $z_{+}=$ $\sup \{x: f(z)=0$ for all $z \in(c, x)\}$. If $z_{-}=a$ and $z_{+}=b$, then there is nothing to prove. Assume $z_{-} \neq a-$ that is, $z_{-} \in D$. There is a sequence $x_{n} \in\left(z_{-}, d\right)$ with $x_{n} \rightarrow z_{-}$. Notice, that as $f(x)=0$ in all of $\left(z_{-}, d\right)$ that $f^{(n)}\left(x_{k}\right)=0$ for all n. As f is analytic, it is C^{n} for all n. Hence, passing to a limit and using the continuity of $f^{(n)}$ we see that $f^{(n)}\left(z_{-}\right)=0-$ we use here that $z_{-} \in D$. As f is analytic and $z_{-} \in D$, there is an interval $R>0$ so that $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-z_{-}\right)^{n}$ when $\left|x-z_{-}\right|<R$ and $x>a$. However, as $f^{(n)}\left(z_{-}\right)=0$ for all n we have that $a_{n}=0$ for all n. Hence, for any x with $\left|x-z_{-}\right|<R$ and $x>a_{-}$we must have $f(x)=0$. However, this contradicts our definition of z_{-}proving that $z_{-}=a$. That $z_{+}=b$ is proved in the same way.

