
Solutions Final Exam — May. 14, 2014

1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the
claim, derive a contradiction or give a counter-example).

(a) (10 points) There exist open intervals In with In+1 ⊂ In so that ∩∞n=1In = ∅.

True. Let In = (0, 1/n). If z ∈ ∩∞n=1In, then 0 < z < 1
n for all n, which violates the

Archimedean principle.

(b) (10 points) If f : R→ R is uniformly continuous and {xn} is Cauchy, then {f(xn)} is Cauchy.

True. Given ε > 0, use the uniform continuity of f to pick δ > 0 so that |x − y| < δ implies
|f(x) − f(y)| < ε. Now use the Cauchy property of {xn} to pick an N so that if N < m,n,
then |xm − xn| < δ. Hence, if N < m,n, then |f(xn)− f(xm)| < ε, i.e., {f(xn)} is Cauchy.
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(c) (10 points) If f : (a, b)→ R is C1 and strictly increasing, then f ′(x) > 0 for each x ∈ (a, b).

False. Let (a, b) = (−1, 1) and f(x) = x3, then x < y implies f(x) < f(y), but f ′(0) = 0.

(d) (10 points) If f : (−1, 1)→ R is C2 with f(0) = f ′(0) = 0 and f ′′(0) = 2, then there is an interval
I containing 0 so that f(x) ≥ 0 for x ∈ I.

True. By Taylor’s theorem f(x) = 1
2f
′′(0)x2 + o(x2) = x2 + o(x2). Choose, ε > 0 so that if

|x| < ε, then |f(x)− x2| < 1
2 |x|

2. By the triangle inequality this means that f(x) > 1
2 |x|

2 ≥ 0
for x ∈ (−ε, ε).
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(e) (10 points) If limn→∞ an = 0, then
∑∞

n=1 an converges.

False. Let an = 1
n , this series has limn→∞ an = limn→∞

1
n = 0 and

∑∞
n=1 an =∞.

(f) (10 points) There is a sequence of continuous functions fn : [−1, 1]→ R converging uniformly to

the function f : [−1, 1]→ R given by f(x) =

{
−1 x ≤ 0
1 x > 0

.

False. For f to be the uniform limit of continuous functions, it must itself be continuous. The
given f is not continuous as limx→0 f(x) does not exist.
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(g) (10 points) If
∑∞

n=1 an is a convergent series, then for all bijections m : N → N the series∑∞
n=1 am(n) is convergent and

∑∞
n=1 an =

∑∞
n=1 am(n) .

False. If the series
∑∞

n=1(−1)n 1
n convergent. However, there is a rearrangement m : N → N

so that
∑∞

n=1(−1)m(n) 1
m(n) diverges to infinity.

(h) (10 points) Let f : [0, 1] → R be Riemann integrable. If f(q) = 0 for all rational numbers
q ∈ [0, 1], then

∫ 1
0 f(x)dx = 0.

True. Consider partitions Pn =
{

0 < 1
n < · · · <

k
n < · · · < 1

}
. Then |Pn| → 0, and so

S(f, Pn, A) →
∫ 1
0 f(x)dx for any choice of A, picking A to be the left endpoints, we see

that S(f, Pn, A) = 0 and so
∫ 1
0 f(x)dx = 0.
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2. (a) (10 points) State the intermediate value theorem.

Let f : [a, b] → R be continuous with f(a) < f(b), then for every y ∈ [f(a), f(b)], there is an
x ∈ [a, b] so that y = f(x).

(b) (15 points) Show that if f : R → R is continuous and I ⊂ R is a compact interval, then f(I) is
compact interval.

Write I = [a, b]. Set M = supI f(x) and m = infI f(x). As I is compact and f continuous,
there are x, y ∈ I with f(x) = m and f(y) = M . Hence, M,m ∈ R. We have {m,M} ⊂
f(I) ⊂ [m,M ] and so if m = M we have nothing to prove. If m < M , then either x < y or
y < x. WLOG we assume x < y. For any z ∈ (m,M) there is a z′ ∈ (x, y) ⊂ I with f(z′) = z.
This implies that f(I) ⊃ [m,M ], that is f(I) = [m,M ].
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3. (a) (10 points) State the mean value theorem.

Let f : (a, b) → R be differentiable. For a < x < y < b, there is a z ∈ (x, y) so that

f ′(z) = f(y)−f(x)
y−x .

(b) (15 points) Show that if f : R→ R is differentiable and f ′(x) ≥ x, then f(x) ≤ f(0) + 1
2x

2 when
x ≤ 0.

Consider the function g(x) = f(x)−f(0)− 1
2x

2. This function is also differentiable as f(0)+ 1
2x

2

is. One computes that g′(x) = f ′(x) − x > 0, so g is non-decreasing. Moreover, g(0) = 0.
Hence, g(x) ≤ 0 for x ≤ 0. Which proves the claim.
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4. (a) (10 points) State one of the (equivalent) definitions of a function f : [a, b] → R being Riemann
integrable.

f is Riemann integrable if it is bounded and for every ε > 0, there is a δ > 0, so that if P is
a partition with |P | < δ, then Osc(f, P ) = S+(f, P )− S−(f, P ) < ε.

(b) (10 points) Give an example of a function f : [0, 1] → R which is not Riemann integrable. You
do not need to justify this.

Consider Dirichlet’s function f(x) =

{
1 x rational
0 x irrational
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(c) (15 points) Using the definition from a), show that if f : [a, b] → R is continuous, then it is
Riemann integrable.

As f is continuous and [a, b] is compact, f is uniformly continuous and is bounded. Using
the uniform continuity of f , given an ε > 0, pick δ > 0 so that |x − y| < δ implies |f(x) −
f(y)| < ε

b−a . For any partition, P = {a = x0 < x1 < . . . < xn = b} we have S+(f, P ) =∑n
i=1Mi(xi − xi−1) where Mi = sup[xi−1,xi]f(x) and S−(f, P ) =

∑n
i=1mi(xi − xi−1) where

mi = inf [xi−1,xi]f(x). By the continuity of f and compactness of [xi−1, xi] we have Mi = f(ai)
and mi = f(bi). Hence, if |P | < δ, then Osc(f, P ) =

∑n
i=1(Mi − mi)(xi − xi−1) < ε as

|ai − bi| < δ.
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5. Let f : D → R be a function.

(a) (10 points) State the definition of f being (real) analytic.

f is real analytic, if D is open and for every x0 ∈ D, there is a power series
∑∞

n=0 an(x0)(x−
x0)

n with positive radius of converge and so that f(x) =
∑∞

n=0 an(x0)(x−x0)n in a neighbor-
hood of x0.

(b) (10 points) Give an example of a function f that is infinitely differentiable (i.e. of class C∞) but
that is not real analytic. You do not need to justify your answer.

Let f(x) =

{
e−1/x

2
x > 0

0 x ≤ 0
. This function is infinitely differentiable, but is not real analytic

as f does not agree with any powerseries near x = 0.
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(c) (15 points) Show that if D is an interval, f is real analytic and f(x) = 0 for all x ∈ I for I ⊂ D
an open interval, then f(x) = 0 for all x ∈ D.

Hint: Consider the maximum interval containing I on which f vanishes. Using the Taylor
polynomials at the endpoints prove this interval is D.

Set D = (a, b) and I = (c, d). Let z− = inf {x : f(z) = 0 for all z ∈ (x, d)} and set z+ =
sup {x : f(z) = 0 for all z ∈ (c, x)}. If z− = a and z+ = b, then there is nothing to prove.
Assume z− 6= a – that is, z− ∈ D. There is a sequence xn ∈ (z−, d) with xn → z−. Notice,
that as f(x) = 0 in all of (z−, d) that f (n)(xk) = 0 for all n. As f is analytic, it is Cn for
all n. Hence, passing to a limit and using the continuity of f (n) we see that f (n)(z−) = 0 –
we use here that z− ∈ D. As f is analytic and z− ∈ D, there is an interval R > 0 so that
f(x) =

∑∞
n=0 an(x − z−)n when |x − z−| < R and x > a. However, as f (n)(z−) = 0 for all n

we have that an = 0 for all n. Hence, for any x with |x− z−| < R and x > a− we must have
f(x) = 0. However, this contradicts our definition of z− proving that z− = a. That z+ = b is
proved in the same way.


