Solutions Final Exam — May. 14, 2014

- 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example).
 - (a) (10 points) There exist open intervals I_n with $I_{n+1} \subset I_n$ so that $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

True. Let $I_n = (0, 1/n)$. If $z \in \bigcap_{n=1}^{\infty} I_n$, then $0 < z < \frac{1}{n}$ for all n, which violates the Archimedean principle.

(b) (10 points) If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous and $\{x_n\}$ is Cauchy, then $\{f(x_n)\}$ is Cauchy.

True. Given $\epsilon > 0$, use the uniform continuity of f to pick $\delta > 0$ so that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. Now use the Cauchy property of $\{x_n\}$ to pick an N so that if N < m, n, then $|x_m - x_n| < \delta$. Hence, if N < m, n, then $|f(x_n) - f(x_m)| < \epsilon$, i.e., $\{f(x_n)\}$ is Cauchy.

(c) (10 points) If $f:(a,b) \to \mathbb{R}$ is C^1 and strictly increasing, then f'(x) > 0 for each $x \in (a,b)$.

False. Let (a, b) = (-1, 1) and $f(x) = x^3$, then x < y implies f(x) < f(y), but f'(0) = 0.

(d) (10 points) If $f: (-1,1) \to \mathbb{R}$ is C^2 with f(0) = f'(0) = 0 and f''(0) = 2, then there is an interval I containing 0 so that $f(x) \ge 0$ for $x \in I$.

True. By Taylor's theorem $f(x) = \frac{1}{2}f''(0)x^2 + o(x^2) = x^2 + o(x^2)$. Choose, $\epsilon > 0$ so that if $|x| < \epsilon$, then $|f(x) - x^2| < \frac{1}{2}|x|^2$. By the triangle inequality this means that $f(x) > \frac{1}{2}|x|^2 \ge 0$ for $x \in (-\epsilon, \epsilon)$.

(e) (10 points) If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.

False. Let $a_n = \frac{1}{n}$, this series has $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$ and $\sum_{n=1}^{\infty} a_n = \infty$.

(f) (10 points) There is a sequence of continuous functions $f_n : [-1, 1] \to \mathbb{R}$ converging uniformly to the function $f : [-1, 1] \to \mathbb{R}$ given by $f(x) = \begin{cases} -1 & x \leq 0 \\ 1 & x > 0 \end{cases}$.

False. For f to be the uniform limit of continuous functions, it must itself be continuous. The given f is not continuous as $\lim_{x\to 0} f(x)$ does not exist.

(g) (10 points) If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then for all bijections $m : \mathbb{N} \to \mathbb{N}$ the series $\sum_{n=1}^{\infty} a_{m(n)}$ is convergent and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{m(n)}$.

False. If the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ convergent. However, there is a rearrangement $m : \mathbb{N} \to \mathbb{N}$ so that $\sum_{n=1}^{\infty} (-1)^{m(n)} \frac{1}{m(n)}$ diverges to infinity.

(h) (10 points) Let $f : [0,1] \to \mathbb{R}$ be Riemann integrable. If f(q) = 0 for all rational numbers $q \in [0,1]$, then $\int_0^1 f(x) dx = 0$.

True. Consider partitions $P_n = \{0 < \frac{1}{n} < \cdots < \frac{k}{n} < \cdots < 1\}$. Then $|P_n| \to 0$, and so $S(f, P_n, A) \to \int_0^1 f(x) dx$ for any choice of A, picking A to be the left endpoints, we see that $S(f, P_n, A) = 0$ and so $\int_0^1 f(x) dx = 0$.

2. (a) (10 points) State the intermediate value theorem.

Let $f : [a, b] \to \mathbb{R}$ be continuous with f(a) < f(b), then for every $y \in [f(a), f(b)]$, there is an $x \in [a, b]$ so that y = f(x).

(b) (15 points) Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous and $I \subset \mathbb{R}$ is a compact interval, then f(I) is compact interval.

Write I = [a, b]. Set $M = \sup_I f(x)$ and $m = \inf_I f(x)$. As I is compact and f continuous, there are $x, y \in I$ with f(x) = m and f(y) = M. Hence, $M, m \in \mathbb{R}$. We have $\{m, M\} \subset$ $f(I) \subset [m, M]$ and so if m = M we have nothing to prove. If m < M, then either x < y or y < x. WLOG we assume x < y. For any $z \in (m, M)$ there is a $z' \in (x, y) \subset I$ with f(z') = z. This implies that $f(I) \supset [m, M]$, that is f(I) = [m, M]. 3. (a) (10 points) State the mean value theorem.

Let $f : (a,b) \to \mathbb{R}$ be differentiable. For a < x < y < b, there is a $z \in (x,y)$ so that $f'(z) = \frac{f(y) - f(x)}{y - x}$.

(b) (15 points) Show that if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and $f'(x) \ge x$, then $f(x) \le f(0) + \frac{1}{2}x^2$ when $x \le 0$.

Consider the function $g(x) = f(x) - f(0) - \frac{1}{2}x^2$. This function is also differentiable as $f(0) + \frac{1}{2}x^2$ is. One computes that g'(x) = f'(x) - x > 0, so g is non-decreasing. Moreover, g(0) = 0. Hence, $g(x) \le 0$ for $x \le 0$. Which proves the claim.

4. (a) (10 points) State one of the (equivalent) definitions of a function $f : [a, b] \to \mathbb{R}$ being Riemann integrable.

f is Riemann integrable if it is bounded and for every $\epsilon > 0$, there is a $\delta > 0$, so that if P is a partition with $|P| < \delta$, then $Osc(f, P) = S^+(f, P) - S^-(f, P) < \epsilon$.

(b) (10 points) Give an example of a function $f : [0,1] \to \mathbb{R}$ which is not Riemann integrable. You do not need to justify this.

Consider Dirichlet's function $f(x) = \begin{cases} 1 & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}$

(c) (15 points) Using the definition from a), show that if $f : [a, b] \to \mathbb{R}$ is continuous, then it is Riemann integrable.

As f is continuous and [a, b] is compact, f is uniformly continuous and is bounded. Using the uniform continuity of f, given an $\epsilon > 0$, pick $\delta > 0$ so that $|x - y| < \delta$ implies $|f(x) - f(y)| < \frac{\epsilon}{b-a}$. For any partition, $P = \{a = x_0 < x_1 < \ldots < x_n = b\}$ we have $S^+(f, P) = \sum_{i=1}^n M_i(x_i - x_{i-1})$ where $M_i = \sup_{[x_{i-1}, x_i]f(x)}$ and $S^-(f, P) = \sum_{i=1}^n m_i(x_i - x_{i-1})$ where $m_i = \inf_{[x_{i-1}, x_i]f(x)}$. By the continuity of f and compactness of $[x_{i-1}, x_i]$ we have $M_i = f(a_i)$ and $m_i = f(b_i)$. Hence, if $|P| < \delta$, then $Osc(f, P) = \sum_{i=1}^n (M_i - m_i)(x_i - x_{i-1}) < \epsilon$ as $|a_i - b_i| < \delta$. 5. Let $f: D \to \mathbb{R}$ be a function.

(a) (10 points) State the definition of f being (real) analytic.

f is real analytic, if D is open and for every $x_0 \in D$, there is a power series $\sum_{n=0}^{\infty} a_n(x_0)(x - x_0)^n$ with positive radius of converge and so that $f(x) = \sum_{n=0}^{\infty} a_n(x_0)(x - x_0)^n$ in a neighborhood of x_0 .

(b) (10 points) Give an example of a function f that is infinitely differentiable (i.e. of class C^{∞}) but that is not real analytic. You do not need to justify your answer.

Let $f(x) = \begin{cases} e^{-1/x^2} & x > 0 \\ 0 & x \le 0 \end{cases}$. This function is infinitely differentiable, but is not real analytic as f does not agree with any powerseries near x = 0.

(c) (15 points) Show that if D is an interval, f is real analytic and f(x) = 0 for all x ∈ I for I ⊂ D an open interval, then f(x) = 0 for all x ∈ D.
Hint: Consider the maximum interval containing I on which f vanishes. Using the Taylor

Hint: Consider the maximum interval containing I on which f vanishes. Using the Taylor polynomials at the endpoints prove this interval is D.

Set D = (a, b) and I = (c, d). Let $z_{-} = \inf \{x : f(z) = 0 \text{ for all } z \in (x, d)\}$ and set $z_{+} = \sup \{x : f(z) = 0 \text{ for all } z \in (c, x)\}$. If $z_{-} = a$ and $z_{+} = b$, then there is nothing to prove. Assume $z_{-} \neq a$ – that is, $z_{-} \in D$. There is a sequence $x_{n} \in (z_{-}, d)$ with $x_{n} \to z_{-}$. Notice, that as f(x) = 0 in all of (z_{-}, d) that $f^{(n)}(x_{k}) = 0$ for all n. As f is analytic, it is C^{n} for all n. Hence, passing to a limit and using the continuity of $f^{(n)}$ we see that $f^{(n)}(z_{-}) = 0$ – we use here that $z_{-} \in D$. As f is analytic and $z_{-} \in D$, there is an interval R > 0 so that $f(x) = \sum_{n=0}^{\infty} a_{n}(x - z_{-})^{n}$ when $|x - z_{-}| < R$ and x > a. However, as $f^{(n)}(z_{-}) = 0$ for all n we have that $a_{n} = 0$ for all n. Hence, for any x with $|x - z_{-}| < R$ and $x > a_{-}$ we must have f(x) = 0. However, this contradicts our definition of z_{-} proving that $z_{-} = a$. That $z_{+} = b$ is proved in the same way.