Solutions Midterm Exam 1 - Oct. 7, 2019

1. (a) (10 points) Give the formal definition of what it means for a set X to be countable infinite.

A set X is countable infinite if there exists a bijection $f: \mathbb{N} \rightarrow X$. Here $\mathbb{N}=\{1,2, \ldots\}$ is the set of natural numbers. The map f being a bijection means that, for every $x \in X$, there is a unique element $n \in \mathbb{N}$ so that $f(n)=x$.
(b) (10 points) Use mathematical induction to prove that, for every $n \in \mathbb{N}$ with $n \geq 4$, one has $2^{n}<n!$. Here $n!=1 \cdot 2 \cdot \ldots \cdot n$ is the factorial of n.

In order to prove the inequality by induction, we must first establish it for the base case, for this problem that is $n=4$. In this case one has $2^{4}=16<24=4$!. To complete the proof one supposes that one has already established $0<2^{m}<m$! for a given $m \geq 4$. As $m \geq 4$, one has $m+1 \geq 2>0$ and so, by the way order and multiplication of natural numbers interact, $2^{m+1}=2^{m} \cdot 2<m!\cdot(m+1)=(m+1)!$. Hence, by the principle of mathematical induction the inequality holds for every $m \geq 4$.
2. (15 points) Let $A \subset \mathbb{R}$ be a non-empty set with the property that if $x, y \in A$, then $x+y \in A$. Show that if A is bounded from below, then $\inf (A) \geq 0$.

Observe that as A is non-empty and bounded from below $x=\inf (A)$ is a real number. If $x<0$, then, by the properties of an ordered field $x<\frac{x}{2}<0$. Hence, as x is the infimum of $A, \frac{x}{2}$ is not a lower bound of A and so there is an element $y \in A$ so $y \leq \frac{x}{2}<0$. Note that $2 y=y+y \in A$ and so $w=4 y=2 y+2 y \in A$, by the hypotheses on A. However, this means $w=4 y \leq 2 x<x$ by the ordered field properties. This contradicts the fact that x is a lower bound for A and so one concludes that $x=\inf (A) \geq 0$ as claimed.
3. (a) (10 points) State the formal definition of what it means for a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ to converge to x.

A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x if for every $\epsilon>0$, there exists a $M \in \mathbb{N}$ so that if $n \geq M$, then $\left|x_{n}-x\right|<\epsilon$.
(b) (15 points) Show directly from the definition that if $x_{n}=\frac{n-2}{2 n+4}$ for $n \in \mathbb{N}$, then the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to $\frac{1}{2}$.

Given $\epsilon>0$, pick M so $M \epsilon>2$ which we can do by the Archimedean principle. For $n \geq M$ we have

$$
\left|\frac{n-2}{2 n+4}-\frac{1}{2}\right|=\left|\frac{n-2-(n+2)}{2 n+4}\right|=\left|\frac{-4}{2 n+4}\right|=2 \frac{1}{n+2} .
$$

Hence, as $n+2>n \geq M>0$ we have

$$
\left|\frac{n-2}{2 n+4}-\frac{1}{2}\right| \leq \frac{2}{M}<\epsilon .
$$

As a consequence, $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2}$.
4. (a) (10 points) Give a bounded sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ so that $\left(\lim \sup _{n \rightarrow \infty} x_{n}\right)^{2} \neq \lim \sup _{n \rightarrow \infty} x_{n}^{2}$.

Set $x_{n}=x_{n}=-1+(-1)^{n}$ which satisfies $-2 \leq x_{n} \leq 0$. Clearly, $x_{n}^{2}=2-2(-1)^{n}$. One has $a_{n}=\sup \left\{x_{k}^{2}: k \geq n\right\}=4$ and $b_{n}=\sup \left\{x_{k}: k \geq n\right\}=0$ and so it follows $\lim \sup _{n \rightarrow \infty} x_{n}^{2}=$ $\lim _{k \rightarrow \infty} a_{k}=4$ while $\left(\limsup _{n \rightarrow \infty} x_{n}\right)^{2}=\left(\lim _{k \rightarrow \infty} b_{k}\right)^{2}=0$.
(b) (15 points) Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence. Show that if $x_{n} \geq 0$ for all $n \in \mathbb{N}$, then $\limsup _{n \rightarrow \infty} x_{n}^{2}=\left(\lim \sup _{n \rightarrow \infty} x_{n}\right)^{2}$.

Given a non-empty bounded set $A \subset[0, \infty)$ let $B=\left\{x^{2}: x \in A\right\}$. One readily sees that B is also a bounded set. Moreover, for any $x \in A$ one has $0 \leq x \leq \sup A$. As $x \geq 0$, the properties of ordered fields imply that $x^{2} \leq x(\sup (A)) \leq(\sup (A))^{2}$. Hence, $\sup (B) \leq(\sup (A))^{2}$.
In fact, one has $\sup (B)=(\sup (A))^{2}$. If $\sup (A)=0$, then $A=\{0\}$ and $B=\{0\}$ and the equality is immediate. As such, one may assume $\sup (A)>0$. In this case, as $0<$ $(1-\epsilon) \sup (A)<\sup (A)$ for every $\epsilon \in(0,1)$ there is an element $y \in A$ so $y>(1-\epsilon) \sup (A)>0$. By the ordered field axioms $y^{2}>(1-\epsilon)^{2}(\sup (A))^{2}$. Hence, $\sup (B) \geq y^{2}>(1-\epsilon)^{2}(\sup (A))^{2}$. As $\epsilon>0$ can be taken as small as one likes one concludes that $\sup (B) \geq(\sup (A))^{2}$. Combined with the previous inequality this verifies the claim.
It follows that, as $x_{n} \geq 0, c_{k}=\sup \left\{x_{n}^{2}: n \geq k\right\}=a_{k}^{2}$ where $a_{k}=\sup \left\{x_{n}: n \geq k\right\}$. Hence, by the limit laws and the fact that monotone sequences converge one has

$$
\limsup _{n \rightarrow \infty} x_{n}^{2}=\lim _{k \rightarrow \infty} c_{k}=\lim _{k \rightarrow \infty} a_{k}^{2}=\left(\lim _{k \rightarrow \infty} a_{k}\right)^{2}=\left(\limsup _{k \rightarrow \infty} x_{k}\right)^{2}
$$

Proving the claim.
5. (15 points) Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence defined inductively by $x_{1}=2$ and $x_{n+1}=x_{n}-x_{n}^{2}-1$ for $n \geq 1$. Show this sequence cannot converge. (Hint: Suppose $\lim _{n \rightarrow \infty} x_{n}=x$, what equation would x satisfy?).

Suppose that the sequence does converge. Set $x=\lim _{n \rightarrow \infty} x_{n}$. By the limit laws this would imply that

$$
x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty}\left(x_{n}-x_{n}^{2}-1\right)=\lim _{n \rightarrow \infty} x_{n}-\left(\lim _{n \rightarrow \infty} x_{n}\right)^{2}-\lim _{n \rightarrow \infty} 1=x-x^{2}-1
$$

It follows that x would have to satsify

$$
x^{2}=-1<0
$$

However, it follows from the properties of an ordered field that $x^{2} \geq 0$. This is a contradiction and leads one to conclude that there is no such x. That is, the sequence can't converge.

