
Solutions Midterm Exam 1 — Mar. 5, 2014

1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the
claim, derive a contradiction or give a counter-example).

(a) (10 points) If A ⊂ B, and B is countable, then A is countable.

False. A may be finite.

(b) (10 points) If B is an open cover of (0, 1], then B has a finite subcover.

False. The cover B = {(2/(n+ 2), 2/n) : n ∈ N} cannot have a finite subcover. Indeed, if B′
was a finite subcover, then, there would be an N so that if I ∈ B′, then I = (2/(n+ 2), 2/n)
for some n < N . This would mean that the value 2/(N + 3) ∈ (0, 1] was not in any element
of B′ – that is, B′ could not itself be a cover of (0, 1].
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(c) (10 points) If [0, 1] ⊃ I1 ⊃ I2 ⊃ . . . ⊃ In ⊃ . . . is a nested sequence of closed intervals, then
∩∞n=1In is non-empty.

True. As each Ii ⊂ [0, 1] they are all bounded. Hence, the Ik are all closed and bounded
intervals and so compact. By definition a closed interval is of the form I = [a, b] for a ≤ b and
so is non-empty. Hence, their intersection is non-empty.

(d) (10 points) For non-empty A,B ⊂ R, let A + B = {x+ y : x ∈ A, y ∈ B}. If A is open, then
A+B is open.

True. Pick z ∈ A+B and write z = x+y. As A is open, there is an ε so that (x−ε, x+ε) ⊂ A.
Hence, (z − ε, z + ε) = (x− ε, x+ ε) + {y} ⊂ A+B. That is, A+B contains a neighborhood
of each of its points and so is open.
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(e) (10 points) Given sequences {xn} and {yn}, define a new sequence {zn} by z2n = xn and z2n−1 =
yn. The sequence {zn} converges if and only if limn→∞ xn = limn→∞ yn – that is, both sequences
converge and have the same limit.

True. If {zn} converges, then all subsequences – such as, {xn} and {zn} – converge to the
same limit. Conversely, if limn→∞ xn = limn→∞ yn = x, then for any ε > 0, there is an m so
that m < n, implies that |xn − x| < ε and |yn − x| < ε. Hence, if 2(m+ 1) < n, |zn − x| < ε.
That is, limn→∞ zn = x.

(f) (10 points) If f : D → R is a continuous function with domain D ⊂ R, then for all x0 ∈ D̄, the
closure of D, limx→x0 f(x) exists.

False. Consider D = (−1, 0) ∪ (0, 1) and f(x) = 1/x, then f is continuous but limx→0 f(x)
does not exist.
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2. (20 points) Let {an} be a Cauchy sequence, with an ≥ a > 0. Working directly from the definitions,
show that

{
a−2n

}
is Cauchy.

We note that
∣∣∣ 1
a2n
− 1

a2k

∣∣∣ = |an−ak||an+ak|
|a2na2k|

≤ 2Na−4|an − ak| where N > 0 is some number so that

|an|, |ak| ≤ N and we used that an, ak ≥ a > 0. As Cauchy sequences are bounded, there is an N
so that, for all n, |an| ≤ N . Now, given, any ε > 0, as {an} is Cauchy, there is an m, so that if

m < n, k, then |an − ak| < 1
2N
−1a4ε. Hence,

∣∣∣ 1
a2n
− 1

a2k

∣∣∣ ≤ 2Na−4
(
1
2N
−1a4ε

)
= ε. That is,

{
a−2n

}
is Cauchy.
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3. (a) (5 points) Let S =
{
x ∈ R : x3 < x

}
. Determine supS and inf S.

We note that if x > 0, then x ∈ S if and only if x2 < 1, that is x ∈ (0, 1). Likewise, if x < 0,
then x ∈ S if only if x2 > 1, that is x ∈ (−∞,−1). Clearly, 0 /∈ S, so S = (−∞,−1) ∪ (0, 1).
Hence, supS = 1 and inf S = −∞.

(b) (15 points) Let an+1 = 1
2

(
an + 2

an

)
, a1 = 1. Set A = {x ∈ R : x = an, n ∈ N} ⊂ R. Determine,

lim supn→∞ an, lim infn→∞ an, inf A, supA and all limit points (if any) of A. (Hint: Show that,
for n ≥ 1, 2 ≤ a2n+1.)

We note that for n ≥ 1, a2n+1 ≥ 2 and that for n ≥ 2, an+1 ≤ an. To see the former we note
that a2n+1 = 1

4(an + 2
an

)2 = 1
4(an − 2

an
)2 + 2 ≥ 2. The latter then follows from 2

an
≥ an for

n ≥ 2. From this we conclude that a1 = 1 and a2 = 3
2 are, respectively, upper and lower

bounds for A and so supA = 3
2 and inf A = 1. For n ≥ 2, an is a bounded monotone non-

increasing sequence and hence lim supn→∞ an = lim infn→∞ an = limn→∞ an = a for some
a ∈ R. One verifies, that a2 = 2 and that an ≥ 0 and so conclude that a =

√
2. The only

possible limit point of A is
√

2, this is indeed a limit point as each an is necessarily rational
and
√

2 is irrational and so there are points in A different from
√

2 arbitrarily close to
√

2 but
different from it.


