Solutions Midterm Exam 1 - Mar. 5, 2014

1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example).
(a) (10 points) If $A \subset B$, and B is countable, then A is countable.

False. A may be finite.
(b) (10 points) If \mathcal{B} is an open cover of $(0,1]$, then \mathcal{B} has a finite subcover.

False. The cover $\mathcal{B}=\{(2 /(n+2), 2 / n): n \in \mathbb{N}\}$ cannot have a finite subcover. Indeed, if \mathcal{B}^{\prime} was a finite subcover, then, there would be an N so that if $I \in \mathcal{B}^{\prime}$, then $I=(2 /(n+2), 2 / n)$ for some $n<N$. This would mean that the value $2 /(N+3) \in(0,1]$ was not in any element of \mathcal{B}^{\prime} - that is, \mathcal{B}^{\prime} could not itself be a cover of $(0,1]$.
(c) (10 points) If $[0,1] \supset I_{1} \supset I_{2} \supset \ldots \supset I_{n} \supset \ldots$ is a nested sequence of closed intervals, then $\cap_{n=1}^{\infty} I_{n}$ is non-empty.

True. As each $I_{i} \subset[0,1]$ they are all bounded. Hence, the I_{k} are all closed and bounded intervals and so compact. By definition a closed interval is of the form $I=[a, b]$ for $a \leq b$ and so is non-empty. Hence, their intersection is non-empty.
(d) (10 points) For non-empty $A, B \subset \mathbb{R}$, let $A+B=\{x+y: x \in A, y \in B\}$. If A is open, then $A+B$ is open.

True. Pick $z \in A+B$ and write $z=x+y$. As A is open, there is an ϵ so that $(x-\epsilon, x+\epsilon) \subset A$. Hence, $(z-\epsilon, z+\epsilon)=(x-\epsilon, x+\epsilon)+\{y\} \subset A+B$. That is, $A+B$ contains a neighborhood of each of its points and so is open.
(e) (10 points) Given sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, define a new sequence $\left\{z_{n}\right\}$ by $z_{2 n}=x_{n}$ and $z_{2 n-1}=$ y_{n}. The sequence $\left\{z_{n}\right\}$ converges if and only if $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$ - that is, both sequences converge and have the same limit.

True. If $\left\{z_{n}\right\}$ converges, then all subsequences - such as, $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ - converge to the same limit. Conversely, if $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=x$, then for any $\epsilon>0$, there is an m so that $m<n$, implies that $\left|x_{n}-x\right|<\epsilon$ and $\left|y_{n}-x\right|<\epsilon$. Hence, if $2(m+1)<n,\left|z_{n}-x\right|<\epsilon$. That is, $\lim _{n \rightarrow \infty} z_{n}=x$.
(f) (10 points) If $f: D \rightarrow \mathbb{R}$ is a continuous function with domain $D \subset \mathbb{R}$, then for all $x_{0} \in \bar{D}$, the closure of $D, \lim _{x \rightarrow x_{0}} f(x)$ exists.

False. Consider $D=(-1,0) \cup(0,1)$ and $f(x)=1 / x$, then f is continuous but $\lim _{x \rightarrow 0} f(x)$ does not exist.
2. (20 points) Let $\left\{a_{n}\right\}$ be a Cauchy sequence, with $a_{n} \geq a>0$. Working directly from the definitions, show that $\left\{a_{n}^{-2}\right\}$ is Cauchy.

We note that $\left|\frac{1}{a_{n}^{2}}-\frac{1}{a_{k}^{2}}\right|=\frac{\left|a_{n}-a_{k}\right|\left|a_{n}+a_{k}\right|}{\left|a_{n}^{2} a_{k}^{2}\right|} \leq 2 N a^{-4}\left|a_{n}-a_{k}\right|$ where $N>0$ is some number so that $\left|a_{n}\right|,\left|a_{k}\right| \leq N$ and we used that $a_{n}, a_{k} \geq a>0$. As Cauchy sequences are bounded, there is an N so that, for all $n,\left|a_{n}\right| \leq N$. Now, given, any $\epsilon>0$, as $\left\{a_{n}\right\}$ is Cauchy, there is an m, so that if $m<n, k$, then $\left|a_{n}-a_{k}\right|<\frac{1}{2} N^{-1} a^{4} \epsilon$. Hence, $\left|\frac{1}{a_{n}^{2}}-\frac{1}{a_{k}^{2}}\right| \leq 2 N a^{-4}\left(\frac{1}{2} N^{-1} a^{4} \epsilon\right)=\epsilon$. That is, $\left\{a_{n}^{-2}\right\}$ is Cauchy.
3. (a) (5 points) Let $S=\left\{x \in \mathbb{R}: x^{3}<x\right\}$. Determine $\sup S$ and $\inf S$.

We note that if $x>0$, then $x \in S$ if and only if $x^{2}<1$, that is $x \in(0,1)$. Likewise, if $x<0$, then $x \in S$ if only if $x^{2}>1$, that is $x \in(-\infty,-1)$. Clearly, $0 \notin S$, so $S=(-\infty,-1) \cup(0,1)$. Hence, $\sup S=1$ and $\inf S=-\infty$.
(b) (15 points) Let $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right), a_{1}=1$. Set $A=\left\{x \in \mathbb{R}: x=a_{n}, n \in \mathbb{N}\right\} \subset \mathbb{R}$. Determine, $\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}, \liminf _{n \rightarrow \infty} a_{n}, \inf A, \sup A$ and all limit points (if any) of A. (Hint: Show that, for $n \geq 1,2 \leq a_{n+1}^{2}$.)

We note that for $n \geq 1, a_{n+1}^{2} \geq 2$ and that for $n \geq 2, a_{n+1} \leq a_{n}$. To see the former we note that $a_{n+1}^{2}=\frac{1}{4}\left(a_{n}+\frac{2}{a_{n}}\right)^{2}=\frac{1}{4}\left(a_{n}-\frac{2}{a_{n}}\right)^{2}+2 \geq 2$. The latter then follows from $\frac{2}{a_{n}} \geq a_{n}$ for $n \geq 2$. From this we conclude that $a_{1}=1$ and $a_{2}=\frac{3}{2}$ are, respectively, upper and lower bounds for A and so $\sup A=\frac{3}{2}$ and $\inf A=1$. For $n \geq 2, a_{n}$ is a bounded monotone nonincreasing sequence and hence $\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=a$ for some $a \in \mathbb{R}$. One verifies, that $a^{2}=2$ and that $a_{n} \geq 0$ and so conclude that $a=\sqrt{2}$. The only possible limit point of A is $\sqrt{2}$, this is indeed a limit point as each a_{n} is necessarily rational and $\sqrt{2}$ is irrational and so there are points in A different from $\sqrt{2}$ arbitrarily close to $\sqrt{2}$ but different from it.

