Solutions Midterm Exam 1 — Feb. 23, 2015

- 1. Let \sim be an equivalence relation on \mathbb{N} .
 - (a) (10 points) Give the formal definition the equivalence class [n] of an element $n \in \mathbb{N}$ with respect to \sim and the formal definition of the quotient space \mathbb{N}/\sim as a subset of the power-set $P(\mathbb{N})$.

By definition, the equivalence class $[n] = \{m \in \mathbb{N} : n \sim m\} \subset \mathbb{N}$. The quotient space X/\sim is just the set of all equivalence classes of \sim , that is $\mathbb{N}/\sim = \{[n] \in P(X) : n \in \mathbb{N}\}$.

(b) (15 points) Show that if each equivalence class of \sim contains only finitely many elements, then the quotient space $X = \mathbb{N}/\sim$ is countable.

We first observe that each element $U \in X$ may be thought of as a subset $U \subset \mathbb{N}$. Furthermore, $\mathbb{N} = \bigcup_{U \in X} U$. In particular, X cannot be finite as if it were, \mathbb{N} would be the finite union of finite sets. We now construct a map

 $\phi:X\to\mathbb{N}$

as follows for each $U \in X$ let $\phi(U) = \min \{x : x \in U\}$. This map is well-defined by the wellordering principle. If $\phi(U) = \phi(U') = n$, then $n \in U \cap U'$ and so U = U'. That is, ϕ is an injection. Let $\phi(X) = \{n \in \mathbb{N} : n = \phi(U) \text{ for some } U \in X\}$. Clearly, $\phi : X \to \phi(X)$ is a bijection and so $\phi(X)$ is not finite. As $\phi(U) \subset \mathbb{N}$, one must have that $\phi(U)$ is countable and hence so is X. 2. (a) (10 points) State the formal definition of Cauchy sequence (of real numbers).

A sequence $\{a_n\}$ of real numbers is Cauchy if and only if for every $\epsilon > 0$, there is an $m \in \mathbb{N}$ so that if n, k > m, then $|a_n - a_k| < \epsilon$.

(b) (15 points) Show directly from the definition, that if $\{a_n\}$ is a Cauchy sequence, then $\{a_n\}$ is bounded in the sense that there is an N > 0 so that $|a_n| < N$ for all $n \in \mathbb{N}$.

By definition, there is an m, so that for all n, k > m one has $|a_n - a_k| < 1$. Let $N = 1 + \max\{|a_1|, |a_2|, \ldots, |a_{m+1}|\}$. Clearly, for $i \le m$, $|a_i| < N$. For i > m, we have $|a_i - a_{m+1}| < 1$. The triangle inequality gives that $|a_i| - |a_{m+1}| \le |a_i - a_{m+1}|$. Hence, $|a_i| < 1 + |a_{m+1}| \le N$.

3. (a) (10 points) Give an example of a set $X \subset \mathbb{R}$ which is bounded from above and does not contain its least upper bound.

The set [0,1) is bounded from above by 1. This is also its least upper bound as any upper bound must be greater than $1 - \epsilon$ for all $\epsilon > 0$.

(b) (15 points) Let $A, B \subset \mathbb{R}$ be non-empty sets which are both bounded from above. Define $A+B = \{z \in \mathbb{R} : z = a+b \text{ for some } a \in A \text{ and some } b \in B\}$. Show that $\sup(A+B) = \sup A + \sup B$.

Observe that if u is an upper bound for A and v is an upper bound for B, then for all $a \in A$ and $b \in B$ we have $a \leq u, b \leq v$ and so $a+b \leq u+v$. Hence, u+v is an upper bound for A+B. This means that $\sup A + \sup B$ is an upper bound for A+B and so $\sup(A+B) \leq \sup A + \sup B$. For all $\epsilon > 0$, the definition of sup ensures there is an $a \in A$ and a $b \in B$ so that $a > \sup A - \epsilon$ and $b > \sup B - \epsilon$. In particular, there is a $z \in A + B$ so that $z > \sup A + \sup B - 2\epsilon$ (indeed, take z = a + b). Hence, $\sup(A + B) \geq \sup A + \sup B - 2\epsilon$ for all $\epsilon > 0$. This implies that $\sup(A + B) \geq \sup A + \sup B$ and the claim follows. 4. (a) (10 points) Give an example of bounded sequences $\{x_n\}$ and $\{y_n\}$ so that x is a limit point of $\{x_n\}$ and y is a limit point of $\{y_n\}$, but x + y is not a limit point of the sequence $\{x_n + y_n\}$.

Let $x_n = (-1)^n$ and $y_n = -(-1)^n$. Then $\{x_n\}$ and $\{y_n\}$ have both ± 1 as a limit point. However, $x_n + z_n = 0$ for all n so 0 is the only limit point of $\{x_n + z\}$ is zero. In particular, 2 = 1 + 1 is not a limit point.

(b) (15 points) Suppose that $\{x_n\}$ and $\{y_n\}$ are bounded sequences. Show that if z is a limit point of $\{x_n + y_n\}$, then there is a limit point x of $\{x_n\}$ and a limit point y of $\{y_n\}$ so that z = x + y. (Hint: Use the fact that limit points are limits of subsequences and that subsequences of convergent sequences converge).

As z is a limit point of there is a subsequence $z'_n = z_{\phi(n)}$ so that $\lim_{n\to\infty} z'_n = z$. Let $x'_n = x_{\phi(n)}$ and let $x' = \limsup_{n\to\infty} x'_n$. As x' is a limit point of $\{x'_n\}$, there is a subsequence $x''_n = x'_{\psi(n)}$ so that $\lim_{n\to\infty} x''_n = x'$. Observe that $x''_n = x_{\phi(\psi(n))}$ is a subsequence and so $\{x''_n\}$ is a subsequence of $\{x_n\}$ – in particular, x' is a limit point of $\{x_n\}$. Now let $y''_n = y'_{\psi(n)}$ so $\{y''_n\}$ is a subsequence of $\{y'_n\}$ (and hence also of $\{y_n\}$). Let $y'' = \limsup_{n\to\infty} y''_n$. As y'' is a limit point of $\{y''_n\}$, there is a subsequence $y'''_n = y''_{\varphi}$ so $y'' = \lim_{n\to\infty} y''_n = y''$. Again, y'' is a limit point of $\{y_n\}$. Let $x'''_n = x''_{\varphi(n)}$ and $z'''_n = x'''_n + y'''_n$. Observe, $\{x'''_n\}$ is a subsequence of $\{x''_n\}$ is a subsequence of $\{z'_n\}$. Hence, $\lim_{n\to\infty} x''_n = \lim_{n\to\infty} x''_n = x'$, and $\lim_{n\to\infty} z'''_n = \lim_{n\to\infty} z''_n = z$ and so $z = \lim_{n\to\infty} z'''_n = \lim_{n\to\infty} x'''_n + \lim_{n\to\infty} y'''_n = x' + y''$.