Solutions Midterm Exam 1 - Feb. 23, 2015

1. Let \sim be an equivalence relation on \mathbb{N}.
(a) (10 points) Give the formal definition the equivalence class $[n]$ of an element $n \in \mathbb{N}$ with respect to \sim and the formal definition of the quotient space \mathbb{N} / \sim as a subset of the power-set $P(\mathbb{N})$.

By definition, the equivalence class $[n]=\{m \in \mathbb{N}: n \sim m\} \subset \mathbb{N}$. The quotient space X / \sim is just the set of all equivalence classes of \sim, that is $\mathbb{N} / \sim=\{[n] \in P(X): n \in \mathbb{N}\}$.
(b) (15 points) Show that if each equivalence class of \sim contains only finitely many elements, then the quotient space $X=\mathbb{N} / \sim$ is countable.

We first observe that each element $U \in X$ may be thought of as a subset $U \subset \mathbb{N}$. Furthermore, $\mathbb{N}=\cup_{U \in X} U$. In particular, X cannot be finite as if it were, \mathbb{N} would be the finite union of finite sets. We now construct a map

$$
\phi: X \rightarrow \mathbb{N}
$$

as follows for each $U \in X$ let $\phi(U)=\min \{x: x \in U\}$. This map is well-defined by the wellordering principle. If $\phi(U)=\phi\left(U^{\prime}\right)=n$, then $n \in U \cap U^{\prime}$ and so $U=U^{\prime}$. That is, ϕ is an injection. Let $\phi(X)=\{n \in \mathbb{N}: n=\phi(U)$ for some $U \in X\}$. Clearly, $\phi: X \rightarrow \phi(X)$ is a bijection and so $\phi(X)$ is not finite. As $\phi(U) \subset \mathbb{N}$, one must have that $\phi(U)$ is countable and hence so is X.
2. (a) (10 points) State the formal definition of Cauchy sequence (of real numbers).

A sequence $\left\{a_{n}\right\}$ of real numbers is Cauchy if and only if for every $\epsilon>0$, there is an $m \in \mathbb{N}$ so that if $n, k>m$, then $\left|a_{n}-a_{k}\right|<\epsilon$.
(b) (15 points) Show directly from the definition, that if $\left\{a_{n}\right\}$ is a Cauchy sequence, then $\left\{a_{n}\right\}$ is bounded in the sense that there is an $N>0$ so that $\left|a_{n}\right|<N$ for all $n \in \mathbb{N}$.

By definition, there is an m, so that for all $n, k>m$ one has $\left|a_{n}-a_{k}\right|<1$. Let $N=1+$ $\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{m+1}\right|\right\}$. Clearly, for $i \leq m,\left|a_{i}\right|<N$. For $i>m$, we have $\left|a_{i}-a_{m+1}\right|<1$. The triangle inequality gives that $\left|a_{i}\right|-\left|a_{m+1}\right| \leq\left|a_{i}-a_{m+1}\right|$. Hence, $\left|a_{i}\right|<1+\left|a_{m+1}\right| \leq N$.
3. (a) (10 points) Give an example of a set $X \subset \mathbb{R}$ which is bounded from above and does not contain its least upper bound.

The set $[0,1)$ is bounded from above by 1 . This is also its least upper bound as any upper bound must be greater than $1-\epsilon$ for all $\epsilon>0$.
(b) (15 points) Let $A, B \subset \mathbb{R}$ be non-empty sets which are both bounded from above. Define $A+B=$ $\{z \in \mathbb{R}: z=a+b$ for some $a \in A$ and some $b \in B\}$. Show that $\sup (A+B)=\sup A+\sup B$.

Observe that if u is an upper bound for A and v is an upper bound for B, then for all $a \in A$ and $b \in B$ we have $a \leq u, b \leq v$ and so $a+b \leq u+v$. Hence, $u+v$ is an upper bound for $A+B$. This means that sup $A+\sup B$ is an upper bound for $A+B$ and so $\sup (A+B) \leq \sup A+\sup B$. For all $\epsilon>0$, the definition of sup ensures there is an $a \in A$ and a $b \in B$ so that $a>\sup A-\epsilon$ and $b>\sup B-\epsilon$. In particular, there is a $z \in A+B$ so that $z>\sup A+\sup B-2 \epsilon$ (indeed, take $z=a+b$). Hence, $\sup (A+B) \geq \sup A+\sup B-2 \epsilon$ for all $\epsilon>0$. This implies that $\sup (A+B) \geq \sup A+\sup B$ and the claim follows.
4. (a) (10 points) Give an example of bounded sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ so that x is a limit point of $\left\{x_{n}\right\}$ and y is a limit point of $\left\{y_{n}\right\}$, but $x+y$ is not a limit point of the sequence $\left\{x_{n}+y_{n}\right\}$.

Let $x_{n}=(-1)^{n}$ and $y_{n}=-(-1)^{n}$. Then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ have both ± 1 as a limit point. However, $x_{n}+z_{n}=0$ for all n so 0 is the only limit point of $\left\{x_{n}+z\right\}$ is zero. In particular, $2=1+1$ is not a limit point.
(b) (15 points) Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences. Show that if z is a limit point of $\left\{x_{n}+y_{n}\right\}$, then there is a limit point x of $\left\{x_{n}\right\}$ and a limit point y of $\left\{y_{n}\right\}$ so that $z=x+y$. (Hint: Use the fact that limit points are limits of subsequences and that subsequences of convergent sequences converge).

As z is a limit point of there is a subsequence $z_{n}^{\prime}=z_{\phi(n)}$ so that $\lim _{n \rightarrow \infty} z_{n}^{\prime}=z$. Let $x_{n}^{\prime}=x_{\phi(n)}$ and let $x^{\prime}=\lim \sup _{n \rightarrow \infty} x_{n}^{\prime}$. As x^{\prime} is a limit point of $\left\{x_{n}^{\prime}\right\}$, there is a subsequence $x_{n}^{\prime \prime}=x_{\psi(n)}^{\prime}$ so that $\lim _{n \rightarrow \infty} x_{n}^{\prime \prime}=x^{\prime}$. Observe that $x_{n}^{\prime \prime}=x_{\phi(\psi(n))}$ is a subsequence and so $\left\{x_{n}^{\prime \prime}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ - in particular, x^{\prime} is a limit point of $\left\{x_{n}\right\}$. Now let $y_{n}^{\prime \prime}=y_{\psi(n)}^{\prime}$ so $\left\{y_{n}^{\prime \prime}\right\}$ is a subsequence of $\left\{y_{n}^{\prime}\right\}$ (and hence also of $\left\{y_{n}\right\}$). Let $y^{\prime \prime}=\lim _{\sup _{n \rightarrow \infty} y_{n}^{\prime \prime} \text {. As } y^{\prime \prime} \text { is a }}$ limit point of $\left\{y_{n}^{\prime \prime}\right\}$, there is a subsequence $y_{n}^{\prime \prime \prime}=y_{\varphi}^{\prime \prime}$ so $y^{\prime \prime}=\lim _{n \rightarrow \infty} y_{n}^{\prime \prime \prime}=y^{\prime \prime}$. Again, $y^{\prime \prime}$ is a limit point of $\left\{y_{n}\right\}$. Let $x_{n}^{\prime \prime \prime}=x_{\varphi(n)}^{\prime \prime}$ and $z_{n}^{\prime \prime \prime}=x_{n}^{\prime \prime \prime}+y_{n}^{\prime \prime \prime}$. Observe, $\left\{x_{n}^{\prime \prime \prime}\right\}$ is a subsequence of $\left\{x_{n}^{\prime \prime}\right\}$ and $\left\{z_{n}^{\prime \prime \prime}\right\}$ is a subsequence of $\left\{z_{n}^{\prime}\right\}$. Hence, $\lim _{n \rightarrow \infty} x_{n}^{\prime \prime \prime}=\lim _{n \rightarrow \infty} x_{n}^{\prime \prime}=x^{\prime}$, and $\lim _{n \rightarrow \infty} z_{n}^{\prime \prime \prime}=\lim _{n \rightarrow \infty} z_{n}^{\prime}=z$ and so $z=\lim _{n \rightarrow \infty} z_{n}^{\prime \prime \prime}=\lim _{n \rightarrow \infty} x_{n}^{\prime \prime \prime}+\lim _{n \rightarrow \infty} y_{n}^{\prime \prime \prime}=x^{\prime}+y^{\prime \prime}$.

