
Solutions Midterm Exam 1 — Feb. 23, 2015

1. Let ∼ be an equivalence relation on N.

(a) (10 points) Give the formal definition the equivalence class [n] of an element n ∈ N with respect
to ∼ and the formal definition of the quotient space N/ ∼ as a subset of the power-set P (N).

By definition, the equivalence class [n] = {m ∈ N : n ∼ m} ⊂ N. The quotient space X/ ∼ is
just the set of all equivalence classes of ∼, that is N/ ∼= {[n] ∈ P (X) : n ∈ N}.

(b) (15 points) Show that if each equivalence class of ∼ contains only finitely many elements, then
the quotient space X = N/ ∼ is countable.

We first observe that each element U ∈ X may be thought of as a subset U ⊂ N. Furthermore,
N = ∪U∈XU . In particular, X cannot be finite as if it were, N would be the finite union of
finite sets. We now construct a map

φ : X → N

as follows for each U ∈ X let φ(U) = min {x : x ∈ U}. This map is well-defined by the well-
ordering principle. If φ(U) = φ(U ′) = n, then n ∈ U ∩ U ′ and so U = U ′. That is, φ is
an injection. Let φ(X) = {n ∈ N : n = φ(U) for some U ∈ X}. Clearly, φ : X → φ(X) is a
bijection and so φ(X) is not finite. As φ(U) ⊂ N, one must have that φ(U) is countable and
hence so is X.
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2. (a) (10 points) State the formal definition of Cauchy sequence (of real numbers).

A sequence {an} of real numbers is Cauchy if and only if for every ε > 0, there is an m ∈ N
so that if n, k > m, then |an − ak| < ε.

(b) (15 points) Show directly from the definition, that if {an} is a Cauchy sequence, then {an} is
bounded in the sense that there is an N > 0 so that |an| < N for all n ∈ N.

By definition, there is an m, so that for all n, k > m one has |an − ak| < 1. Let N = 1 +
max {|a1|, |a2|, . . . , |am+1|}. Clearly, for i ≤ m, |ai| < N . For i > m, we have |ai − am+1| < 1.
The triangle inequality gives that |ai| − |am+1| ≤ |ai − am+1|. Hence, |ai| < 1 + |am+1| ≤ N .
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3. (a) (10 points) Give an example of a set X ⊂ R which is bounded from above and does not contain
its least upper bound.

The set [0, 1) is bounded from above by 1. This is also its least upper bound as any upper
bound must be greater than 1− ε for all ε > 0.

(b) (15 points) Let A,B ⊂ R be non-empty sets which are both bounded from above. Define A+B =
{z ∈ R : z = a+ b for some a ∈ A and some b ∈ B}. Show that sup(A+B) = supA+ supB.

Observe that if u is an upper bound for A and v is an upper bound for B, then for all a ∈ A
and b ∈ B we have a ≤ u, b ≤ v and so a+b ≤ u+v. Hence, u+v is an upper bound for A+B.
This means that supA+supB is an upper bound for A+B and so sup(A+B) ≤ supA+supB.
For all ε > 0, the definition of sup ensures there is an a ∈ A and a b ∈ B so that a > supA− ε
and b > supB− ε. In particular, there is a z ∈ A+B so that z > supA+ supB− 2ε (indeed,
take z = a + b). Hence, sup(A + B) ≥ supA + supB − 2ε for all ε > 0. This implies that
sup(A+B) ≥ supA+ supB and the claim follows.
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4. (a) (10 points) Give an example of bounded sequences {xn} and {yn} so that x is a limit point of
{xn} and y is a limit point of {yn}, but x+ y is not a limit point of the sequence {xn + yn}.

Let xn = (−1)n and yn = −(−1)n. Then {xn} and {yn} have both ±1 as a limit point.
However, xn + zn = 0 for all n so 0 is the only limit point of {xn + z} is zero. In particular,
2 = 1 + 1 is not a limit point.

(b) (15 points) Suppose that {xn} and {yn} are bounded sequences. Show that if z is a limit point
of {xn + yn}, then there is a limit point x of {xn} and a limit point y of {yn} so that z = x+ y.
(Hint: Use the fact that limit points are limits of subsequences and that subsequences of convergent
sequences converge).

As z is a limit point of there is a subsequence z′n = zφ(n) so that limn→∞ z′n = z. Let
x′n = xφ(n) and let x′ = lim supn→∞ x′n. As x′ is a limit point of {x′n}, there is a subsequence
x′′n = x′ψ(n) so that limn→∞ x′′n = x′. Observe that x′′n = xφ(ψ(n)) is a subsequence and so {x′′n}
is a subsequence of {xn} – in particular, x′ is a limit point of {xn}. Now let y′′n = y′ψ(n) so

{y′′n} is a subsequence of {y′n} (and hence also of {yn}). Let y′′ = lim supn→∞ y′′n. As y′′ is a
limit point of {y′′n}, there is a subsequence y′′′n = y′′ϕ so y′′ = limn→∞ y′′′n = y′′. Again, y′′ is
a limit point of {yn}. Let x′′′n = x′′ϕ(n) and z′′′n = x′′′n + y′′′n . Observe, {x′′′n } is a subsequence

of {x′′n} and {z′′′n } is a subsequence of {z′n}. Hence, limn→∞ x′′′n = limn→∞ x′′n = x′, and
limn→∞ z′′′n = limn→∞ z′n = z and so z = limn→∞ z′′′n = limn→∞ x′′′n + limn→∞ y′′′n = x′ + y′′.


