
Solutions Midterm Exam 2 — Nov. 11, 2019

1. (a) (10 points) State the intermediate value theorem.

The intermediate value theorem states that if f : [a, b]→ R is continuous and f(a) < y < f(b)
or f(b) < y < f(a), then there is a c ∈ (a, b) so f(c) = y.

(b) (10 points) Show that if f : (−2, 2) → R is differentiable and f(−1) = f(1) = 0 and f ′(−1) =
f ′(1) = 1, then f must have a zero in (−1, 1).

As f ′(−1) = 1, this means that there is a δ > 0 so if 0 < |x − (−1)| < δ one has∣∣∣f(x)−f(−1)x−(−1) − 1
∣∣∣ < 1

2 . This means that for x ∈ (−1,−1 + δ) one has f(x) > 1
2(x + 1) > 0. In

particular, we have a a ∈ (−1, 0) so f(a) > 0. A similar argument gives a b ∈ (0, 1) so f(b) < 0.
As f is differentiable on (−2, 2) it is continuous on (−2, 2) and hence also on [a, b]. Hence, we
can apply the intermediate value theorem to f to see that there is a c ∈ (a, b) ⊂ (−1, 1) so
f(c) = 0.
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2. (a) (10 points) State the definition of uniform continuity on an interval I for a function f : I → R.

The function f is uniformly continuous on I if, for every ε > 0, there is a δ > 0 so that if
x, y ∈ I satisfy |x− y| < δ, then |f(x)− f(y)| < ε.

(b) (10 points) Give an example of a continuous function f : (0, 1)→ R that is not uniformly contin-
uous. Please justify your answer.

The function f(x) = 1
x is continuous on (0, 1) as it is the quotient of two continuous functions

that don’t vanish. It is not uniformly continuous as if x, y ∈ (0, 1) satisfy

|f(x)− f(y)| < 1,

then
|x− y| < xy.

In particular, there can be no δ > 0 so |x − y| < δ implies |f(x) − f(y)| < 1. Indeed, if
there was such a δ > 0 then one could pick x = min {δ/2, 1/2} and y = x/2 ≤ 1

4 . This gives
|x− y| = x

2 and so x
2 < xy ≤ x

4 , which contradicts, x > 0.
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(c) (10 points) Show that if f : (a, b)→ R is uniformly continuous, then f is bounded.

As f is uniformly continuous, there is a δ > 0 so that if x, y ∈ (a, b) satisfy |x − y| < δ,
then |f(x) − f(y)| < 1. Pick a′ ∈ (a, a + δ) and b′ ∈ (b − δ, b) so a′ < b′. Observe that f is
continuous on [a′, b′] and so, by the min-max theorem, there is a constant M so |f(x)| ≤ M
for x ∈ [a′, b′]. Observe, that if x ∈ (a, a′), then one has |x− a′| < δ and so

|f(x)| = |f(x)− f(a′) + f(a′)| ≤ |f(x)− f(a′)|+ |f(a′)| ≤ 1 +M.

In a similar fashion if x ∈ (b′, b), then

|f(x)| ≤ 1 +M.

It follows that for every x ∈ (a, b) one has |f(x)| ≤ 1 +M .
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3. (a) (10 points) State the mean value theorem.

The mean value theorem states that if f : [a, b]→ R is continuous and differentiable on (a, b),
then there is a c ∈ (a, b), so that

f ′(c) =
f(b)− f(a)

b− a
.

(b) (10 points) Show that if f : (a, b)→ R is differentiable and satisfies |f ′(x)| ≤ C for all x ∈ (a, b),
then |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ (a, b).

If x = y, then there is nothing to show. With out loss of generality we may assume x < y (as
the argument is identical if y < x). As f is differentiable on (a, b) it is also continuous. By
the mean value theorem applied to f on [x, y], one has f(y) − f(x) = f ′(c)(y − x) for some
c ∈ (x, y). Hence,

|f(y)− f(x)| = |f ′(c)||y − x| ≤ C|y − x|.

the desired result immediately follows from this bound.
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4. (a) (10 points) State the definition of the upper and lower Darboux integrals,
∫ b
a f(x)dx and

∫ b
a f(x)dx

of a bounded function f : [a, b]→ R.

The upper Darboux integral is given by∫ b

a
f(x)dx = inf {U(P, f) : P partition of [a, b]}

where
P = {a = x0 < x1 < . . . < xn = b}

is a partition of [a, b] and

U(P, f) =
N∑
i=1

Mi∆xi

is an upper Darboux sum. Here Mi = supx∈[xi−1,xi] f(x) and ∆xi = xi − xi−1.
Likewise, a lower Darboux integral is given by∫ b

a
f(x)dx = sup {L(P, f) : P partition of [a, b]}

where

L(P, f) =
N∑
i=1

mi∆xi

is the lower Darboux sum. Here mi = infx∈[xi−1,xi] f(x).

(b) (5 points) Given an example of a bounded function f : [0, 1] → R so
∫ 1
0 f(x)dx 6=

∫ 1
0 f(x)dx.

That is, give an example of a bounded function on [0, 1] that is not Riemann integrable. You do
not have to justify your answer.

An example is given by the function

f(x) =

{
1 x ∈ Q ∩ [0, 1]
0 x ∈ [0, 1]\Q

Indeed, in this case U(P, f) = 1 for every partition and so the upper Darboux integral is 1,
while L(P, f) = 0 for every partition and so the lower Darboux integral is 0.
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(c) (15 points) Show that if f : [a, b]→ R is monotone decreasing, then
∫ b
a f(x)dx =

∫ b
a f(x)dx, that

is, f is Riemann integrable.

First observe that as f is monotone decreasing one has f(b) ≤ f(x) ≤ f(a) for all x ∈ [a, b] and
so f is bounded. Let M > 0 be a bound on f so |f(x)| ≤M for x ∈ [a, b]. As a consequence,
the upper and lower Darboux integrals both exist. As we showed in class, for any partition,
P one has

0 ≤
∫ b

a
f(x)dx−

∫ b

a
f(x)dx ≤ U(P, f)− L(P, f).

It follows that for any ε > 0 we just need to find a partition Pε fo [a, b] so U(Pε, f)−L(Pε, f) < ε.

To that end, given an ε > 0, fix a partition Pε = {a = x0 < x1 < . . . < xn = b} so that
∆xi = b−a

n < ε/2M for 1 ≤ i ≤ n.

Observe that as f is monotone decreasing one has

Mi = sup
x∈[xi−1,xi]

f(x) = f(xi−1)

while
mi = inf

x∈[xi−1,xi]
f(x) = f(xi)

We compute that

U(Pε, f)−L(Pε, f) =
n∑
i=1

(Mi−mi)∆xi =
n∑
i=1

(f(xi−1)−f(xi))
b− a
n

=
b− a
n

n∑
i=1

(f(xi−1)−f(xi))

As this is a telescoping sum, this yields

U(Pε, f)− L(Pε, f) =
b− a
n

(f(a)− f(b)) < (f(a)− f(b))ε/2M ≤ ε.

Hence, sending ε→ 0 one sees that the upper and lower Darboux integrals agree as claimed.


