Solutions Midterm Exam 2 - Nov. 11, 2019

1. (a) (10 points) State the intermediate value theorem.

The intermediate value theorem states that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<y<f(b)$ or $f(b)<y<f(a)$, then there is a $c \in(a, b)$ so $f(c)=y$.
(b) (10 points) Show that if $f:(-2,2) \rightarrow \mathbb{R}$ is differentiable and $f(-1)=f(1)=0$ and $f^{\prime}(-1)=$ $f^{\prime}(1)=1$, then f must have a zero in $(-1,1)$.

As $f^{\prime}(-1)=1$, this means that there is a $\delta>0$ so if $0<|x-(-1)|<\delta$ one has $\left|\frac{f(x)-f(-1)}{x-(-1)}-1\right|<\frac{1}{2}$. This means that for $x \in(-1,-1+\delta)$ one has $f(x)>\frac{1}{2}(x+1)>0$. In particular, we have a $a \in(-1,0)$ so $f(a)>0$. A similar argument gives a $b \in(0,1)$ so $f(b)<0$. As f is differentiable on $(-2,2)$ it is continuous on $(-2,2)$ and hence also on $[a, b]$. Hence, we can apply the intermediate value theorem to f to see that there is a $c \in(a, b) \subset(-1,1)$ so $f(c)=0$.
2. (a) (10 points) State the definition of uniform continuity on an interval I for a function $f: I \rightarrow \mathbb{R}$.

The function f is uniformly continuous on I if, for every $\epsilon>0$, there is a $\delta>0$ so that if $x, y \in I$ satisfy $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.
(b) (10 points) Give an example of a continuous function $f:(0,1) \rightarrow \mathbb{R}$ that is not uniformly continuous. Please justify your answer.

The function $f(x)=\frac{1}{x}$ is continuous on $(0,1)$ as it is the quotient of two continuous functions that don't vanish. It is not uniformly continuous as if $x, y \in(0,1)$ satisfy

$$
|f(x)-f(y)|<1
$$

then

$$
|x-y|<x y
$$

In particular, there can be no $\delta>0$ so $|x-y|<\delta$ implies $|f(x)-f(y)|<1$. Indeed, if there was such a $\delta>0$ then one could pick $x=\min \{\delta / 2,1 / 2\}$ and $y=x / 2 \leq \frac{1}{4}$. This gives $|x-y|=\frac{x}{2}$ and so $\frac{x}{2}<x y \leq \frac{x}{4}$, which contradicts, $x>0$.
(c) (10 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous, then f is bounded.

As f is uniformly continuous, there is a $\delta>0$ so that if $x, y \in(a, b)$ satisfy $|x-y|<\delta$, then $|f(x)-f(y)|<1$. Pick $a^{\prime} \in(a, a+\delta)$ and $b^{\prime} \in(b-\delta, b)$ so $a^{\prime}<b^{\prime}$. Observe that f is continuous on $\left[a^{\prime}, b^{\prime}\right]$ and so, by the min-max theorem, there is a constant M so $|f(x)| \leq M$ for $x \in\left[a^{\prime}, b^{\prime}\right]$. Observe, that if $x \in\left(a, a^{\prime}\right)$, then one has $\left|x-a^{\prime}\right|<\delta$ and so

$$
|f(x)|=\left|f(x)-f\left(a^{\prime}\right)+f\left(a^{\prime}\right)\right| \leq\left|f(x)-f\left(a^{\prime}\right)\right|+\left|f\left(a^{\prime}\right)\right| \leq 1+M
$$

In a similar fashion if $x \in\left(b^{\prime}, b\right)$, then

$$
|f(x)| \leq 1+M
$$

It follows that for every $x \in(a, b)$ one has $|f(x)| \leq 1+M$.
3. (a) (10 points) State the mean value theorem.

The mean value theorem states that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b), then there is a $c \in(a, b)$, so that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(b) (10 points) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is differentiable and satisfies $\left|f^{\prime}(x)\right| \leq C$ for all $x \in(a, b)$, then $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in(a, b)$.

If $x=y$, then there is nothing to show. With out loss of generality we may assume $x<y$ (as the argument is identical if $y<x$). As f is differentiable on (a, b) it is also continuous. By the mean value theorem applied to f on $[x, y]$, one has $f(y)-f(x)=f^{\prime}(c)(y-x)$ for some $c \in(x, y)$. Hence,

$$
|f(y)-f(x)|=\left|f^{\prime}(c)\right||y-x| \leq C|y-x| .
$$

the desired result immediately follows from this bound.
4. (a) (10 points) State the definition of the upper and lower Darboux integrals, $\bar{\int}_{a}^{b} f(x) d x$ and $\underline{\int}_{a}^{b} f(x) d x$ of a bounded function $f:[a, b] \rightarrow \mathbb{R}$.

The upper Darboux integral is given by

$$
\int_{a}^{b} f(x) d x=\inf \{U(P, f): P \text { partition of }[a, b]\}
$$

where

$$
P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}
$$

is a partition of $[a, b]$ and

$$
U(P, f)=\sum_{i=1}^{N} M_{i} \Delta x_{i}
$$

is an upper Darboux sum. Here $M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)$ and $\Delta x_{i}=x_{i}-x_{i-1}$.
Likewise, a lower Darboux integral is given by

$$
\int_{a}^{b} f(x) d x=\sup \{L(P, f): P \text { partition of }[a, b]\}
$$

where

$$
L(P, f)=\sum_{i=1}^{N} m_{i} \Delta x_{i}
$$

is the lower Darboux sum. Here $m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)$.
(b) (5 points) Given an example of a bounded function $f:[0,1] \rightarrow \mathbb{R}$ so $\int_{0}^{1} f(x) d x \neq \int_{0}^{1} f(x) d x$. That is, give an example of a bounded function on $[0,1]$ that is not Riemann integrable. You do not have to justify your answer.

An example is given by the function

$$
f(x)=\left\{\begin{array}{cc}
1 & x \in \mathbb{Q} \cap[0,1] \\
0 & x \in[0,1] \backslash \mathbb{Q}
\end{array}\right.
$$

Indeed, in this case $U(P, f)=1$ for every partition and so the upper Darboux integral is 1 , while $L(P, f)=0$ for every partition and so the lower Darboux integral is 0 .
(c) (15 points) Show that if $f:[a, b] \rightarrow \mathbb{R}$ is monotone decreasing, then $\bar{\int}_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$, that is, f is Riemann integrable.

First observe that as f is monotone decreasing one has $f(b) \leq f(x) \leq f(a)$ for all $x \in[a, b]$ and so f is bounded. Let $M>0$ be a bound on f so $|f(x)| \leq M$ for $x \in[a, b]$. As a consequence, the upper and lower Darboux integrals both exist. As we showed in class, for any partition, P one has

$$
0 \leq \bar{\int}_{a}^{b} f(x) d x-\int_{a}^{b} f(x) d x \leq U(P, f)-L(P, f)
$$

It follows that for any $\epsilon>0$ we just need to find a partition P_{ϵ} fo $[a, b]$ so $U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right)<\epsilon$. To that end, given an $\epsilon>0$, fix a partition $P_{\epsilon}=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ so that $\Delta x_{i}=\frac{b-a}{n}<\epsilon / 2 M$ for $1 \leq i \leq n$.
Observe that as f is monotone decreasing one has

$$
M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)=f\left(x_{i-1}\right)
$$

while

$$
m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)=f\left(x_{i}\right)
$$

We compute that
$U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i}=\sum_{i=1}^{n}\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right) \frac{b-a}{n}=\frac{b-a}{n} \sum_{i=1}^{n}\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)$
As this is a telescoping sum, this yields

$$
U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right)=\frac{b-a}{n}(f(a)-f(b))<(f(a)-f(b)) \epsilon / 2 M \leq \epsilon
$$

Hence, sending $\epsilon \rightarrow 0$ one sees that the upper and lower Darboux integrals agree as claimed.

