Solutions Midterm Exam 2 — Apr. 6, 2015

1. (a) (10 points) State the intermediate value theorem for continuous functions.

A continuous function f on a closed interval [a, b] assumes all values between f(a) and f(b).

(b) (15 points) Let $f : [0,1] \to [0,1]$ be continuous. Show that there is at least one $x \in [0,1]$ so that f(f(x)) = x.

Consider function g(x) = f(x) - x this function is continuous as f is as well. If g(0) = f(0) = 0 or g(1) = f(1) - 1 = 0 then f(f(0)) = 0 or f(f(1)) = 1 respectively. Therefore it remains to study the case where g(0) > 0 and g(1) < 0, then by IVT, there exists $x \in (0, 1)$, g(x) = 0, so f(x) = x which implies f(f(x)) = x.

2. (a) (10 points) Give the formal definition for a function $f: D \to \mathbb{R}$ to be uniformly continuous.

We say f is uniformly continuous on D if for every m there exists n such that for any $x, y \in D$ with |x - y| < 1/n, we have |f(x) - f(y)| < 1/m.

(b) (15 points) Using the formal definition directly, show that $f(x) = \frac{1}{x}$ is uniformly continuous as a map $f: (1,2) \to \mathbb{R}$.

Consider any error 1/m, and two points $x, y \in (1, 2)$, then by the fact |xy| > 1

$$\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| < |y - x|$$

, thus if we take 1/n=1/m, then for any $x,y\in(1,2)$ with |x-y|<1/n, we would have

$$\left|\frac{1}{x} - \frac{1}{y}\right| < |y - x| < \frac{1}{m}.$$

So f is uniformly continuous on (1, 2).

3. (a) (10 points) State the mean value theorem.

If f is continuous on [a, b] and differentiable on (a, b), then $f'(x_0) = (f(b) - f(a))/(b - a)$ for some x_0 in (a, b).

(b) (15 points) Suppose that $f: (-1,1) \to \mathbb{R}$ is differentiable and that f(0) = 0 and $|f'(x)| \le |x|^3$. Show that $|f(x)| \le x^4$.

By the mean value theorem, there exists some x_0 with $0 \le |x_0| \le |x|$, such that

$$|f(x)| = |f(x) - f(0)| \le |f'(x_0)| |x - 0| \le |x_0|^3 |x| \le x^4.$$

- 4. Suppose that $f:[0,1] \to \mathbb{R}$ is continuous and C^2 on (0,1) and f(0) = f(1) = 0.
 - (a) (10 points) Give an example of such an f that has a strict local maximum at some point $x_0 \in (0, 1)$ but which has $f''(x_0) = 0$.

Basically we want to modify $-x^4$ as our f, since it has local maximum at 0 while its second order derivative at 0 is 0. So take $f(x) = -(x - 1/2)^4 + 1/16$.

(b) (15 points) Show that if $f''(x) \ge 0$ for $x \in (0,1)$, then $f(x) \le 0$ for $x \in (0,1)$. (Hint: Consider $g_{\epsilon}(x) = f(x) + \epsilon x(x-1)$ for $\epsilon > 0$ and consider what happens as $\epsilon \to 0$).

Clearly for any $\epsilon > 0$, $g_{\epsilon}''(x) = f''(x) + 2\epsilon > 0$, together with the fact $g_{\epsilon}(0) = g_{\epsilon}(1) = 0$, we know that the graph of g(x) lies below the secant line connecting (0,0) and (1,0), which tells us $g_{\epsilon}(x) < 0$ for any $x \in (0, 1)$. Taking $\epsilon \to 0$ gives that $f(x) \leq 0$ for any $x \in (0, 1)$.