Solutions Midterm Exam 2 - Apr. 6, 2015

1. (a) (10 points) State the intermediate value theorem for continuous functions.

A continuous function f on a closed interval $[a, b]$ assumes all values between $f(a)$ and $f(b)$.
(b) (15 points) Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that there is at least one $x \in[0,1]$ so that $f(f(x))=x$.

Consider function $g(x)=f(x)-x$ this function is continuous as f is as well. If $g(0)=f(0)=0$ or $g(1)=f(1)-1=0$ then $f(f(0))=0$ or $f(f(1))=1$ respectively. Therefore it remains to study the case where $g(0)>0$ and $g(1)<0$, then by IVT, there exists $x \in(0,1), g(x)=0$, so $f(x)=x$ which implies $f(f(x))=x$.
2. (a) (10 points) Give the formal definition for a function $f: D \rightarrow \mathbb{R}$ to be uniformly continuous.

We say f is uniformly continuous on D if for every m there exists n such that for any $x, y \in D$ with $|x-y|<1 / n$, we have $|f(x)-f(y)|<1 / m$.
(b) (15 points) Using the formal definition directly, show that $f(x)=\frac{1}{x}$ is uniformly continuous as a $\operatorname{map} f:(1,2) \rightarrow \mathbb{R}$.

Consider any error $1 / m$, and two points $x, y \in(1,2)$, then by the fact $|x y|>1$

$$
\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right|<|y-x|
$$

, thus if we take $1 / n=1 / m$, then for any $x, y \in(1,2)$ with $|x-y|<1 / n$, we would have

$$
\left|\frac{1}{x}-\frac{1}{y}\right|<|y-x|<\frac{1}{m}
$$

So f is uniformly continuous on $(1,2)$.
3. (a) (10 points) State the mean value theorem.

If f is continuous on $[a, b]$ and differentiable on (a, b), then $f^{\prime}\left(x_{0}\right)=(f(b)-f(a)) /(b-a)$ for some x_{0} in (a, b).
(b) (15 points) Suppose that $f:(-1,1) \rightarrow \mathbb{R}$ is differentiable and that $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq|x|^{3}$. Show that $|f(x)| \leq x^{4}$.

By the mean value theorem, there exists some x_{0} with $0 \leq\left|x_{0}\right| \leq|x|$, such that

$$
|f(x)|=|f(x)-f(0)| \leq\left|f^{\prime}\left(x_{0}\right)\right||x-0| \leq\left|x_{0}\right|^{3}|x| \leq x^{4}
$$

4. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and C^{2} on $(0,1)$ and $f(0)=f(1)=0$.
(a) (10 points) Give an example of such an f that has a strict local maximum at some point $x_{0} \in(0,1)$ but which has $f^{\prime \prime}\left(x_{0}\right)=0$.

Basically we want to modify $-x^{4}$ as our f, since it has local maximum at 0 while its second order derivative at 0 is 0 .
So take $f(x)=-(x-1 / 2)^{4}+1 / 16$.
(b) (15 points) Show that if $f^{\prime \prime}(x) \geq 0$ for $x \in(0,1)$, then $f(x) \leq 0$ for $x \in(0,1)$. (Hint: Consider $g_{\epsilon}(x)=f(x)+\epsilon x(x-1)$ for $\epsilon>0$ and consider what happens as $\left.\epsilon \rightarrow 0\right)$.

Clearly for any $\epsilon>0, g_{\epsilon}^{\prime \prime}(x)=f^{\prime \prime}(x)+2 \epsilon>0$, together with the fact $g_{\epsilon}(0)=g_{\epsilon}(1)=0$, we know that the graph of $g(x)$ lies below the secant line connecting $(0,0)$ and $(1,0)$, which tells us $g_{\epsilon}(x)<0$ for any $x \in(0,1)$. Taking $\epsilon \rightarrow 0$ gives that $f(x) \leq 0$ for any $x \in(0,1)$.

