Midterm 1 Solutions

1. (10 pts each) True or false; justify as much as you can.
a. The set S of all sequences consisting of zeroes and ones is countable.

False by Cantor's diagonalization argument. If the set (say S) was countable, i.e $S=$ $\left\{b^{1}, b^{2}, \ldots, b^{n}, \ldots\right\}$ then define a new sequence $\left\{x_{n}\right\}$ with $x_{n}=0$ if $b_{n}^{n}=1$ and $x_{n}=1$ otherwise. Then $\left\{x_{n}\right\}$ is not in the list. Alternatively define a map $f: 2^{\mathbb{N}} \rightarrow S$ by $f(A)=\left\{x_{n}\right\}$ where $x_{n}=1$ if $n \in A$ and otherwise. It is easy to see that f is a bijection.
b. A sequence is convergent if and only if all of its subsequences are convergent.

True. It sounds false because at first glance you may have two subsequences $\left\{x_{n}^{\prime}\right\}$ and $\left\{y_{n}^{\prime}\right\}$ which have different limits. However this cannot happen because we can intersperse these subsequences (with ordering as they appear in the original sequence) and obtain a new subsequence $\left\{z_{n}^{\prime}\right\}$ which does not converge.
c. $(n+1)!\geq 2^{n}$ for all $n \in \mathbb{N}$.

True by induction: Let S be the set all $n \in \mathbb{N}$ for which this is true. Then S contains 1 and assuming S contains n, we have

$$
(n+2)!=(n+2)(n+1)!\geq(n+2) 2^{n} \geq 22^{n}=2^{n+1}
$$

so S contains $n+1$. Hence $S=\mathbb{N}$.
d. The sup of a bounded infinite set S is the largest limit point of S .

This is false as stated $\operatorname{since} \sup S$ might be an isolated point of S. If $\sup S$ is a limit point as well as an upper bound for S , it follows that any other limit point y of S must satisfy $y \leq \sup S$ for if $x_{n} \rightarrow y, x_{n} \in S$ then $x_{n} \leq \sup S$ so $y \leq \sup S$.
e. The subset $(-1,1) \backslash\{0\}$ of \mathbb{R} is open.

True. $(-1,1) \backslash\{0\}=(-1,0) \cup(0,1)$ is the union of two open intervals so is open.
f. The countable union of closed intervals is closed.

False. Take $I_{n}=\left[0,1-\frac{1}{n}\right], n=2,3, \ldots$ Then $\cup I_{n}=[0,1)$ does not contain 1 .
2. (20 pts) Let $\left\{a_{n}\right\}$ be a Cauchy sequence. Show directly using the definition that the sequence $\left\{a_{n}^{2}\right\}$ is also a Cauchy sequence. Carefully justify all of the steps. You may use the result that a Cauchy sequence is bounded.

Proof. Since $\left\{a_{n}\right\}$ is Cauchy, $\left|a_{n}\right| \leq M$ for some $M>0$. Then $\left|a_{j}^{2}-a_{k}^{2}\right|=\mid\left(a_{j}-a_{k}\right)\left(a_{j}+\right.$ $\left.a_{k}\right)|\leq 2 M| a_{j}-a_{k} \mid$. Given $\varepsilon>0$ choose $N=N(\varepsilon)$ so that $\left|a_{j}-a_{k}\right| \leq \frac{\varepsilon}{2 M}$ for $j, k \geq N$. Then $\left|a_{j}^{2}-a_{k}^{2}\right| \leq \varepsilon$ for $j, k \geq N$.
3. (20pts) Let $S=(-\infty,-1] \cup(1,2) \cup\{3\}$. Find (5 pts each)
a. The limit points of S.

The limit points are $(-\infty,-1] \cup[1,2]$.
b. ∂S.
$\partial S=\{$ closure of S$\} \backslash\{$ interior of S$\}=\{-\infty\} \cup\{-1,1,2,3\}$. Recall closure of $\mathrm{S}=S \cup$ $\{$ limit points of $S\}$
c. The isolated points of S.

The point $\{3\}$ is isolated.
d. The complement of S in $\mathbb{R}\left(S^{\prime}=\mathbb{R} \backslash S\right)$.
$S^{\prime}=(-1,1] \cup[2,3) \cup(3, \infty)$.

