
Midterm 2 Math 405 November 18, 2013

Show all work in a clear, concise and legible style.

Each problem is worth 25 points.

1. Let f(x) be a bounded monotone increasing continuous function on [a, b). Show that f

extends to a continuous on [a,b] in the following steps:

a. Let {xn} be a sequence converging to b. Show that L = limn→∞ f(xn) exists.

The sequence f(xn) is monotone increasing and bounded so converges to a finite limit L.

b. Now suppose {yn} is another sequence converging to b with M = limn→∞ f(yn). Show

that M ≤ L. By symmetry L ≤M and hence L = M .

Given ε > 0 choose N = N(ε) so large that M − ε ≤ f(yn) ≤M for n > N . Fix n > N ;

then M − ε ≤ f(yn) ≤ f(xk) ≤ L for k sufficiently large since the sequence {xn} converges

to b. Hence M ≤ L + ε and so M ≤ L. By symmetry M=L and so limx→b− f(x) = L so f

is continuous on [a,b].

2. Determine the constants k1, k2 so that the function

h(x) =

{
k1x− 5 if x < 2

3− k2x
2 if x ≥ 2

is differentiable at x = 2. Be sure to fully justify.

We want to choose k1, k2 so that 2k1 − 5 = 3 − 4k2 and k1 = −4k2. Solving gives

k2 = −2, k1 = 8 which makes h(2) = 11. This makes h(x) continuous at x = 2 and we can

write the difference quotient for x 6= 2

h(x)− h(2)

x− 2
=

h(x)− 11

x− 2
=

{
8 if x < 2

2(x + 2) if x ≥ 2

Taking the limit as x→ 2 we that that h(x) is differentiable at x = 2 with h′(2) = 8.

3. Let f be a twice continuously differentiable (i.e C2) function on R.

a. State Taylor’s theorem about the approximation of f(x) near a point x0 by a second

order polynomial. Use Taylor’s theorem to show that if f ′′ < 0, the graph of f(x) lies on

one side (below) its tangent line (the graph of its best linear approximation l(x) ) in a small
1



2

neighborhood of any x0.

Taylors theorem: Let f be a C2 function in a neighborhood of x0. Then

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 + o(|x− x0|2) as x tends to x0 .

In particular if f ′′(x0) < 0 then if |x−x0| is small enough so that 1
2f
′′(x0)(x−x0)

2 + o(|x−
x0|2) < 0, i.e 1

2f
′′(x0)+o(1) < 0 then f(x) ≤ f(x0)+f ′(x0)(x−x0) in a small neighborhood

of x0 with equality only at x = x0.

b. Still assuming that f ′′ < 0, show that the graph of f(x) globally lies under its tangent

line.

Suppose for contradiction that the graph y = f(x) touches the tangent line y = f(x0) +

f ′(x0)(x − x0) at some point x1 6= x0. Let g(x) = f(x) − (f(x0) + f ′(x0)(x − x0)). Then

g(x0) = g(x1) = 0 and g(x) < 0 on the interval between x0 and x1 (we may assume that

x1 is the ”first such point”). Then g(x) has a minimum at at point c in the interval and

g′(c) = 0, g′′(c) ≥ 0. Hence f ′′(c) ≥ 0 a contradiction and also we see that f(x) lies above

its tangent line which is parallel to y = f(x0) + f ′(x0)(x− x0).

4. Let f(x) =


x if 0 ≤ x < 1

4 if x = 1

3− x if 1 < x ≤ 2

State the Cauchy criterion for Riemann integrability and use it to show that f is Riemann

integrable on [0,2]. You may use the theorem that a continuous function on a closed interval

[a, b] is Riemann integrable.

The Cauchy criterion states that a function f is Riemann integrable on [a, b] if and only

if give ε > 0 there is a partition P of [a, b] such that S+(f, P )− S−(f, P ) < ε.

Given ε > 0 consider the interval I = (1− ε
24 , 1+ ε

24). Then on I, S+(h, I)−S−(h, I) < ε
3

since the oscillation of h is less than 4 and the length of I is ε
12 .

The functions x and 3− x are continuous and so Riemann integrable so there is a partition

P1 of [0, 1− ε
24 ] and a partition P2 of [1 + ε

24 , 2] so that S+(h, Pj)−S−(h, Pj) <
ε
3 , j = 1, 2.

Now take P to be the partition 0f [0, 2] formed by the endpoints of P1 and P2 combined.

Then S+(h, P )− S−(h, P ) < ε
3 + ε

3 + ε
3 = ε.


