Midterm 2 Math 405 November 18, 2013

Show all work in a clear, concise and legible style. Each problem is worth 25 points.

1. Let f(x) be a bounded monotone increasing continuous function on [a, b). Show that f extends to a continuous on [a,b] in the following steps:

a. Let $\{x_n\}$ be a sequence converging to b. Show that $L = \lim_{n \to \infty} f(x_n)$ exists.

The sequence $f(x_n)$ is monotone increasing and bounded so converges to a finite limit L.

b. Now suppose $\{y_n\}$ is another sequence converging to b with $M = \lim_{n \to \infty} f(y_n)$. Show that $M \leq L$. By symmetry $L \leq M$ and hence L = M.

Given $\varepsilon > 0$ choose $N = N(\varepsilon)$ so large that $M - \varepsilon \leq f(y_n) \leq M$ for n > N. Fix n > N; then $M - \varepsilon \leq f(y_n) \leq f(x_k) \leq L$ for k sufficiently large since the sequence $\{x_n\}$ converges to b. Hence $M \leq L + \varepsilon$ and so $M \leq L$. By symmetry M=L and so $\lim_{x \to b^-} f(x) = L$ so f is continuous on [a,b].

2. Determine the constants k_1 , k_2 so that the function $h(x) = \begin{cases} k_1 x - 5 & \text{if } x < 2\\ 3 - k_2 x^2 & \text{if } x \ge 2 \end{cases}$

is differentiable at x = 2. Be sure to fully justify.

We want to choose k_1 , k_2 so that $2k_1 - 5 = 3 - 4k_2$ and $k_1 = -4k_2$. Solving gives $k_2 = -2$, $k_1 = 8$ which makes h(2) = 11. This makes h(x) continuous at x = 2 and we can write the difference quotient for $x \neq 2$

$$\frac{h(x) - h(2)}{x - 2} = \frac{h(x) - 11}{x - 2} = \begin{cases} 8 & \text{if } x < 2\\ 2(x + 2) & \text{if } x \ge 2 \end{cases}$$

Taking the limit as $x \to 2$ we that that h(x) is differentiable at x = 2 with h'(2) = 8.

3. Let f be a twice continuously differentiable (i.e C^2) function on \mathbb{R} .

a. State Taylor's theorem about the approximation of f(x) near a point x_0 by a second order polynomial. Use Taylor's theorem to show that if f'' < 0, the graph of f(x) lies on one side (below) its tangent line (the graph of its best linear approximation l(x)) in a small neighborhood of any x_0 .

Taylors theorem: Let f be a C^2 function in a neighborhood of x_0 . Then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o(|x - x_0|^2) \text{ as } x \text{ tends to } x_0.$$

In particular if $f''(x_0) < 0$ then if $|x - x_0|$ is small enough so that $\frac{1}{2}f''(x_0)(x - x_0)^2 + o(|x - x_0|^2) < 0$, i.e. $\frac{1}{2}f''(x_0) + o(1) < 0$ then $f(x) \le f(x_0) + f'(x_0)(x - x_0)$ in a small neighborhood of x_0 with equality only at $x = x_0$.

b. Still assuming that f'' < 0, show that the graph of f(x) globally lies under its tangent line.

Suppose for contradiction that the graph y = f(x) touches the tangent line $y = f(x_0) + f'(x_0)(x - x_0)$ at some point $x_1 \neq x_0$. Let $g(x) = f(x) - (f(x_0) + f'(x_0)(x - x_0))$. Then $g(x_0) = g(x_1) = 0$ and g(x) < 0 on the interval between x_0 and x_1 (we may assume that x_1 is the "first such point"). Then g(x) has a minimum at at point c in the interval and $g'(c) = 0, g''(c) \ge 0$. Hence $f''(c) \ge 0$ a contradiction and also we see that f(x) lies above its tangent line which is parallel to $y = f(x_0) + f'(x_0)(x - x_0)$.

4. Let
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 4 & \text{if } x = 1\\ 3 - x & \text{if } 1 < x \le 2 \end{cases}$$

State the Cauchy criterion for Riemann integrability and use it to show that f is Riemann integrable on [0,2]. You may use the theorem that a continuous function on a closed interval [a,b] is Riemann integrable.

The Cauchy criterion states that a function f is Riemann integrable on [a, b] if and only if give $\varepsilon > 0$ there is a partition P of [a, b] such that $S^+(f, P) - S^-(f, P) < \varepsilon$.

Given $\varepsilon > 0$ consider the interval $I = (1 - \frac{\varepsilon}{24}, 1 + \frac{\varepsilon}{24})$. Then on I, $S^+(h, I) - S^-(h, I) < \frac{\varepsilon}{3}$ since the oscillation of h is less than 4 and the length of I is $\frac{\varepsilon}{12}$.

The functions x and 3-x are continuous and so Riemann integrable so there is a partition P_1 of $[0, 1-\frac{\varepsilon}{24}]$ and a partition P_2 of $[1+\frac{\varepsilon}{24}, 2]$ so that $S^+(h, P_j) - S^-(h, P_j) < \frac{\varepsilon}{3}, j = 1, 2$. Now take P to be the partition 0f [0, 2] formed by the endpoints of P_1 and P_2 combined. Then $S^+(h, P) - S^-(h, P) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$.