Midterm 2 Math 405 November 18, 2013

Show all work in a clear, concise and legible style.
Each problem is worth 25 points.

1. Let $f(x)$ be a bounded monotone increasing continuous function on $[a, b)$. Show that f extends to a continuous on $[\mathrm{a}, \mathrm{b}]$ in the following steps:
a. Let $\left\{x_{n}\right\}$ be a sequence converging to b. Show that $L=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.

The sequence $f\left(x_{n}\right)$ is monotone increasing and bounded so converges to a finite limit L .
b. Now suppose $\left\{y_{n}\right\}$ is another sequence converging to b with $M=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$. Show that $M \leq L$. By symmetry $L \leq M$ and hence $L=M$.

Given $\varepsilon>0$ choose $N=N(\varepsilon)$ so large that $M-\varepsilon \leq f\left(y_{n}\right) \leq M$ for $n>N$. Fix $n>N$; then $M-\varepsilon \leq f\left(y_{n}\right) \leq f\left(x_{k}\right) \leq L$ for k sufficiently large since the sequence $\left\{x_{n}\right\}$ converges to b . Hence $M \leq L+\varepsilon$ and so $M \leq L$. By symmetry $\mathrm{M}=\mathrm{L}$ and so $\lim _{x \rightarrow b^{-}} f(x)=L$ so f is continuous on [a,b].
2. Determine the constants k_{1}, k_{2} so that the function
$h(x)= \begin{cases}k_{1} x-5 & \text { if } x<2 \\ 3-k_{2} x^{2} & \text { if } x \geq 2\end{cases}$
is differentiable at $x=2$. Be sure to fully justify.
We want to choose k_{1}, k_{2} so that $2 k_{1}-5=3-4 k_{2}$ and $k_{1}=-4 k_{2}$. Solving gives $k_{2}=-2, k_{1}=8$ which makes $h(2)=11$. This makes $h(x)$ continuous at $x=2$ and we can write the difference quotient for $x \neq 2$

$$
\frac{h(x)-h(2)}{x-2}=\frac{h(x)-11}{x-2}= \begin{cases}8 & \text { if } x<2 \\ 2(x+2) & \text { if } x \geq 2\end{cases}
$$

Taking the limit as $x \rightarrow 2$ we that that $h(x)$ is differentiable at $x=2$ with $h^{\prime}(2)=8$.
3. Let f be a twice continuously differentiable (i.e C^{2}) function on \mathbb{R}.
a. State Taylor's theorem about the approximation of $f(x)$ near a point x_{0} by a second order polynomial. Use Taylor's theorem to show that if $f^{\prime \prime}<0$, the graph of $f(x)$ lies on one side (below) its tangent line (the graph of its best linear approximation $l(x)$) in a small
neighborhood of any x_{0}.

Taylors theorem: Let f be a C^{2} function in a neighborhood of x_{0}. Then

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+o\left(\left|x-x_{0}\right|^{2}\right) \quad \text { as } x \text { tends to } x_{0}
$$

In particular if $f^{\prime \prime}\left(x_{0}\right)<0$ then if $\left|x-x_{0}\right|$ is small enough so that $\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+o(\mid x-$ $\left.\left.x_{0}\right|^{2}\right)<0$, i.e $\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)+o(1)<0$ then $f(x) \leq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ in a small neighborhood of x_{0} with equality only at $x=x_{0}$.
b. Still assuming that $f^{\prime \prime}<0$, show that the graph of $f(x)$ globally lies under its tangent line.
Suppose for contradiction that the graph $y=f(x)$ touches the tangent line $y=f\left(x_{0}\right)+$ $f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ at some point $x_{1} \neq x_{0}$. Let $g(x)=f(x)-\left(f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right)$. Then $g\left(x_{0}\right)=g\left(x_{1}\right)=0$ and $g(x)<0$ on the interval between x_{0} and x_{1} (we may assume that x_{1} is the "first such point"). Then $g(x)$ has a minimum at at point c in the interval and $g^{\prime}(c)=0, g^{\prime \prime}(c) \geq 0$. Hence $f^{\prime \prime}(c) \geq 0$ a contradiction and also we see that $f(x)$ lies above its tangent line which is parallel to $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.
4. Let $f(x)= \begin{cases}x & \text { if } 0 \leq x<1 \\ 4 & \text { if } x=1 \\ 3-x & \text { if } 1<x \leq 2\end{cases}$

State the Cauchy criterion for Riemann integrability and use it to show that f is Riemann integrable on $[0,2]$. You may use the theorem that a continuous function on a closed interval $[a, b]$ is Riemann integrable.

The Cauchy criterion states that a function f is Riemann integrable on $[a, b]$ if and only if give $\varepsilon>0$ there is a partition P of $[a, b]$ such that $S^{+}(f, P)-S^{-}(f, P)<\varepsilon$.

Given $\varepsilon>0$ consider the interval $I=\left(1-\frac{\varepsilon}{24}, 1+\frac{\varepsilon}{24}\right)$. Then on I, $S^{+}(h, I)-S^{-}(h, I)<\frac{\varepsilon}{3}$ since the oscillation of h is less than 4 and the length of I is $\frac{\varepsilon}{12}$.
The functions x and $3-x$ are continuous and so Riemann integrable so there is a partition P_{1} of $\left[0,1-\frac{\varepsilon}{24}\right]$ and a partition P_{2} of $\left[1+\frac{\varepsilon}{24}, 2\right]$ so that $S^{+}\left(h, P_{j}\right)-S^{-}\left(h, P_{j}\right)<\frac{\varepsilon}{3}, j=1,2$. Now take P to be the partition of $[0,2]$ formed by the endpoints of P_{1} and P_{2} combined. Then $S^{+}(h, P)-S^{-}(h, P)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$.

