Practice Midterm 2

1. (10 pts each) True or false; justify as much as you can.
a. If $f(x), g(x)$ are continuous functions on $[0,1]$ which agree at every rational, then $f=g$ on $[0,1]$.
b. If $|f(x)|$ is continuous at x_{0} then $f(x)$ is continuous at x_{0}.
c. If f is a strictly monotone function on $[0,1$ with range an interval, then f is one to one.
d. Let f be continuous on \mathbb{R}. Then the inverse image of an open interval is an open interval.
e. If $f(x)$ is uniformly continuous on \mathbb{R} and $\left\{x_{n}\right\}$ is a Cauchy sequence, then so is $\left\{f\left(x_{n}\right)\right\}$.
f. There exists a continuous bijection map $f:[0,1) \rightarrow \mathbb{R}$.
2. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that the equation $f(x)=x$ has at least one solution in $[0,1]$.
3. Let $f(x)$ be a C^{1} function on \mathbb{R}^{+}and satisfy $f^{\prime}(x)>f(x), f(0)=0$. Show that $f(x)>0$ for $x>0$.
4. Let $f(x)$ be strictly increasing and continuous on $[0, \infty)$ with $\mathrm{f}(0)=0$. Show that

$$
\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x \geq a b
$$

When does equality hold? Hint: Draw a picture and interpret geometrically.
5. Let $f(x)$ be C^{3} on an interval I. Suppose $a_{0}<a_{1}<a_{2}$ are points of I and $f\left(a_{0}\right)=f\left(a_{1}\right)=f\left(a_{2}\right)=f^{\prime}\left(a_{2}\right)=0$. Show there is a point $c \in I$ where $f^{\prime \prime \prime}(c)=0$.
6. Let $f(x)$ be continuous on $[0, \infty)$ and assume that $L=\lim _{x \rightarrow+\infty} f(x)$ exists and is finite. Show that f is bounded. (Recall $L=\lim _{x \rightarrow+\infty} f(x)$ means that give $\varepsilon>0, \exists N=N(\varepsilon)$ such that $x>N$ implies $|f(x)-L|<\varepsilon$.)
7. Let $f(x)$ be Riemann integrable on $[0,1]$ and assume that $f(x)=0$ when x is rational. Show that $\int_{0}^{1} f(x) d x=0$. Note that $f(x)$ is assumed bounded but nothing is assumed about the values of $f(x)$ when x is irrational.
8. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cc}1 & \text { if } x=\frac{1}{n}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{array}\right.$

Show that $f(x)$ is Riemann integrable.

