Practice Midterm 2

1. (10 pts each) True or false; justify as much as you can.
a. If $f(x), g(x)$ are continuous functions on $[0,1]$ which agree at every rational, then $f=g$ on $[0,1]$.
True. Given any $\varepsilon>0$ and $y \in(0,1)$ choose $\delta>0$ so that $\mid(f(x)-g(x))-(f(y)-g(y) \mid<\varepsilon$ if $|x-y| \leq \delta$. Now take x to be a rational in $(y-\delta, y+\delta) \cap[0,1]$. Then $|f(y)-g(y)|<\varepsilon$.
b. If $|f(x)|$ is continuous at x_{0} then $f(x)$ is continuous at x_{0}.

False. Take $f(x)= \begin{cases}-1 & \text { if } x \leq 0 \\ 1 & \text { if } x>0\end{cases}$
c. If f is a strictly monotone function on $[0,1]$ with range an interval, then f is one to one. True. In fact (see my notes on monotone functions) f is continuous and one to one.
d. Let f be continuous on \mathbb{R}. Then the inverse image of an open interval is an open interval.
False. The inverse image is open but not necessarily an interval. Take for example $f(x)=\sin x$.
e. If $f(x)$ is uniformly continuous on \mathbb{R} and $\left\{x_{n}\right\}$ is a Cauchy sequence, then so is $\left\{f\left(x_{n}\right)\right\}$. True. $\left|f\left(x_{j}\right)-f\left(x_{k}\right)\right|<\varepsilon$ if $\left|x_{j}-x_{k}\right|<\delta(\varepsilon)$. So if $j, k>N(\delta)=N(\varepsilon)$ then $\left|x_{j}-x_{k}\right|<\delta$, i.e the sequence $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
f. There exists a continuous bijection map $f:[0,1) \rightarrow \mathbb{R}$.

False. The image of $f\left(\left[0, \frac{1}{2}\right]\right.$ is compact, say contained in $[-N, N)$. Hence the inverse image of the points $-(N+1)$ and $N+1$ lie in $\left(\frac{1}{2}, 1\right)$. By the intermediate value theorem, the inverse image of the interval $(-(N+1), N+1)$ also lies in $\left(\frac{1}{2}, 1\right)$ so f cannot be one to one.
2. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Show that the equation $f(x)=x$ has at least one solution in $[0,1]$.

Let $h(x)=f(x)-x$. Then $h(0)=f(0) \geq 0$ and $h(1)=f(1)-1 \leq 0$. By the intermediate value theorem there is an x such that $h(x)=0$.
3. Let $f(x)$ be a C^{1} function on \mathbb{R}^{+}and satisfy $f^{\prime}(x)>f(x), f(0)=0$. Show that $f(x)>0$ for $x>0$.
Let $h(x)=e^{-x} f(x)$. Then $h^{\prime}(x)=e^{-x}\left(f^{\prime}(x)-f(x)\right)>0$ for $x>0$ and $h(0)=0$. Hence
$h(x)>0$ for $x>0$.
4. Let $f(x)$ be strictly increasing and continuous on $[0, \infty)$ with $\mathrm{f}(0)=0$. Show that

$$
\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x \geq a b
$$

When does equality hold? Hint: Draw a picture and interpret geometrically.
The first integral is the area under the graph of $y=f(x)$ from 0 to a and the second integral is the area bounded by the y axis and the graph from $y=0$ to $y=b$ (" area under the graph of f^{-1} from 0 to b "). If $a \neq f^{-1}(b)$, then the left hand side is strictly greater than the right hand side interpreted as the area of the rectangle with base a and height b. If $a=f^{-1}(b)$, we have equality.
5. Let $f(x)$ be C^{3} on an interval I . Suppose $a_{0}<a_{1}<a_{2}$ are points of I and $f\left(a_{0}\right)=f\left(a_{1}\right)=f\left(a_{2}\right)=f^{\prime}\left(a_{2}\right)=0$. Show there is a point $c \in I$ where $f^{\prime \prime \prime}(c)=0$. By the mean value theorem, there are points $b_{1} \in\left(a_{0}, a_{1}\right), b_{2} \in\left(a_{1}, a_{2}\right)$ such that $f^{\prime}\left(b_{1}\right)=$ $f^{\prime}\left(b_{2}\right)=0$. Applying the mean value theorem again but this time to $f^{\prime}(x)$, there are points $c_{1} \in\left(b_{1}, b_{2}\right), c_{2} \in\left(b_{2}, a_{2}\right)$ such that $f^{\prime \prime}\left(c_{1}\right)=f^{\prime \prime}\left(c_{2}\right)=0$. By the mean value theorem applied to $f^{\prime \prime}(x)$ we arat
6. Let $f(x)$ be continuous on $[0, \infty)$ and assume that $L=\lim _{x \rightarrow+\infty} f(x)$ exists and is finite. Show that f is bounded. (Recall $L=\lim _{x \rightarrow+\infty} f(x)$ means that give $\varepsilon>0, \exists N=N(\varepsilon)$ such that $x>N$ implies $|f(x)-L|<\varepsilon$.)
By the definition of L , there exists N such that $x>N$ implies $|f(x)-L|<1$. In particular $|f(x)| \leq L+1$ on (N, ∞). Since $f(x)$ is continuous on $[0, N+1],|f(x)| \leq M$ on $[0, N+1]$ for some M. Hence $f(x)$ is bounded by $\mathrm{M}+\mathrm{L}+1$ on $[0, \infty)$.
7. Let $f(x)$ be Riemann integrable on $[0,1]$ and assume that $f(x)=0$ when x is rational. Show that $\int_{0}^{1} f(x) d x=0$. Note that $f(x)$ is assumed bounded but nothing is assumed about the values of $f(x)$ when x is irrational.
Since f is assume Riemann integrable, given $\varepsilon>0$, there is a partition P such that $S^{+}(f, P)-S^{-}(f, P) \mid<\varepsilon$. However any Cauchy sum $S(f, P)=\sum f\left(a_{k}\right)\left(x_{k+1}-x_{k}\right)$ satisfies $S^{-}(f, P) \leq S(f, P) \leq S^{+}(f, P)$. Therefore $\left|\int_{0}^{1} f(x) d x-S(f, P)\right|<\varepsilon$. Now choose each a_{k} to be rational so $S(f, P)=0$. Then $\left|\int_{0}^{1} f(x) d x\right|<\varepsilon$ so $\int_{0}^{1} f(x) d x=0$.
8. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{lc}1 & \text { if } x=\frac{1}{n}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{array}\right.$

Show that $f(x)$ is Riemann integrable.

Let $\varepsilon>0$ be given and choose an integerr N so that $\frac{1}{N}<\varepsilon$. Let I_{n} be a closed interval of length $2^{-(n+1)} \varepsilon$ centered at the point $\frac{1}{n}, n=1,2, \ldots, N$. Let P be the partition of $[0,1]$ consisting of the endpoints of the $I_{n} \cap[0,1]$ and the points $0, \frac{\varepsilon}{2}, 1$. Then since $0 \leq f \leq 1$ and $f=0$ on the open intervals $\left(\frac{1}{n}, \frac{1}{n+1}\right)$, we have $S^{+}(f, P)-S^{-}(f, P) \mid<\varepsilon$. Hence f is Riemann integrable and as in problem 7 (here we choose a_{k} to be irrational in the Cauchy sum) $\int_{0}^{1} f(x) d x=0$.

