Math 645, Fall 2017: Assignment #8

Due: Tuesday, November 14th

Problem #1. Let $\phi \in C^{\infty}([0,L])$ satisfy $\phi > 0$, $\phi^{(2k)}(0) = 0$ for all $k \geq 0$ (i.e., the derivatives of ϕ at 0 behave like those of an odd function) and $\phi'(0) = 1$ and consider the warped product metric $(M', g') = ((0,L) \times \mathbb{S}^{n}, g^{E} \times g^{S})$.

a) Show that there is a $n+1$ dimensional Riemannian manifold (M, g) and an isometric embedding $\phi : M' \to M$ so that $\lim_{r \to 0} \phi(r, v_{i}) = p_{0} \in M$ exists and $f(M') = M \setminus \{ p_{0} \}$.

b) Determine what the geodesics emanating from p_{0} correspond to in M'.

c) Compute the sectional curvatures of (M, g) in terms of ϕ. (Hint: The Jacobi equation along geodesics emanating from p_{0} – treat p_{0} separately.)

Problem #2. Let (M, g) be a complete Riemannian manifold of dimension n with non-positive curvature. Let X be a Killing vector field on M.

a) Show that if X has two distinct zeros, then X must vanish on any geodesic joining the two zeros. (Hint: Use last weeks homework.)

b) (Bonus): Show that when $n = 2$, if X admits two distinct zeros, then it must vanish identically. (Hint: Use the identity from Homework 3 and the result from last week)

c) (Bonus): Show by example that X may have two distinct zeros but not vanish identically when $n \geq 3$.

Problem #3. Fix a manifold M. Two metrics g and h on M are conformal provided there is a function $u \in C^{\infty}(M)$ so that $h = e^{2u}g$.

a) If D^{h} is the Levi-Civita connection of h and D^{g} is the Levi-Civita connection of g show that for any $X, Y \in \mathfrak{X}(M)$

$$D^{h}_{X}Y = D^{g}_{X}Y + (X \cdot u)Y + (Y \cdot u)X - g(X, Y)\nabla_{g}u.$$

Here $\nabla_{g}u$ is the g-gradient of u. (Hint: use compatibility with the metric).

b) Use this formula to determine the geodesics of the upper half-plane model of hyperbolic space. Recall, this is the Riemannian manifold (\mathbb{H}^{n}, g^{H}) where $\mathbb{H}^{n} = \{ x^{n} > 0 \} \subset \mathbb{R}^{n}$ and with metric $g^{H} = (x^{n})^{-2}g^{E}$.

Problem #4. Given two Riemannian manifolds (M, g) and (N, h) we say a map $f : M \to N$ is conformal if $f^{*}h$ is conformal to g.

a) Show that the map $f : U \to \mathbb{R}^{n}$ where $U \subset \mathbb{R}^{n}$ given by

$$f(x) = p_{0} + \frac{\lambda A(x - p_{1})}{|x - p_{1}|^{\epsilon}}$$

is conformal from (U, g^{E}) to (\mathbb{R}^{n}, g^{E}) when $\lambda > 0$, $p_{0} \in \mathbb{R}^{n}$, $p_{1} \in \mathbb{R}^{n} \setminus U$, $\epsilon = 0, 2$ and $A \in O(n)$. That is compositions of translation, rotation, homothetic scaling and “inversion” are conformal.

b) Use complex analysis to give a conformal map not of this form when $n = 2$.

c) (Bonus): Show that when $n \geq 3$ the only conformal maps are those found in a). This is called Liouville’s theorem.

Problem #5. Show that if (\mathbb{R}^{2}, g) is a complete Riemannian manifold, then

$$\lim_{r \to \infty} \inf_{(x^{1})^{2} + (x^{2})^{2} \geq r^{2}} S(x^{1}, x^{2}) \leq 0.$$

Here (x^{1}, x^{2}) are the standard coordinates on \mathbb{R}^{2} and $S(x^{1}, x^{2})$ is the scalar curvature at the point (x^{1}, x^{2}).