Math 645, Fall 2017: Assignment #9
Due: Thursday, December 7th

Problem #1. Prove Wirtinger’s inequality: If \(f : [0, \pi] \to \mathbb{R} \) is \(C^2 \) and satisfies \(f(0) = f(\pi) = 0 \), then
\[
\int_0^\pi f^2 \, dt \leq \int_0^\pi (f')^2 \, dt,
\]
with equality if and only if \(f(t) = c \sin(t) \) where \(c \in \mathbb{R} \). Hint: Use Fourier series or the calculus of variations.

Problem #2. Let \(M \) be a complete simply connected Riemannian manifold. For each \(p \in M \), denote by \(\text{conj}(p) \), the set of first conjugate points of \(p \) (i.e., for each \(v \in T_p M \) with \(v \neq 0 \), consider the first conjugate point of the geodesic \(c_v(s) = \exp_p(sv) \)).

a) Show that if \(p' \in \text{conj}(p) \) satisfies \(d_g(p,p') = L \), then there is a unit speed geodesic \(\gamma : [0,L] \to M \) connecting \(p \) to \(p' \), so that there is a non-trivial Jacobi field \(J \) along \(\gamma \) so \(J(0) = J(L) = 0 \), and \(I(J,J) = 0 \).

b) If for each \(p \in M \), \(\text{conj}(p) \) consists of one point \(p' \) with \(d_g(p,p') = d_g(p, \text{conj}(p)) = \pi \) and the sectional curvature of \(M \) satisfies \(0 < \delta \leq K \leq 1 \), then \(M \) is isometric to \((\mathbb{S}^n, g^\mathbb{S}) \). Hint: Consider the geodesic, \(\gamma \), Jacobi field, \(J \), from part a), using the Jacobi equation, the index property of \(J \) and the previous problem conclude that along the geodesic \(\gamma \) one has \(K(\gamma', J) = 1 \), where \(K(\gamma', J) \) is the sectional curvature of the two plane spanned by \(\gamma' \) and \(J \).

Problem #3. Let \((M,g) \) be a Riemannian manifold. Let \(\Omega \subset M \) be an open domain which is strongly convex (i.e. for every two points \(p,q \in \Omega \) there is a minimizing geodesic contained in \(\Omega \) connecting \(p \) to \(q \)) and so that \(\partial \Omega \) is a smooth submanifold.

a) Show that the second fundamental form \(\Pi_N \) of \(\partial N = \partial \Omega \) with respect to the outward pointing normal to \(\Omega \) is non-negative in that \(\Pi_N^p(v,v) \geq 0 \) for all \(v \in T_p \partial \Omega \) and \(p \in \partial \Omega \).

b) The domain \(\Omega \) in \(M \) is convex if \(\partial \Omega \) is a submanifold curve whose whose second fundamental form with respect to the outward pointing normal to \(\Omega \) is non-negative. Show by example that a domain may be convex but fail to be strongly convex.

Problem #4. Show that if \(M \subset \mathbb{R}^{n+1} \) is a compact hypersurface (i.e., a codimension one submanifold), then there is a point \(p \in M \) so that the second fundamental form of \(M \) is strictly positive (with respect to some choice of unit normal). Hint: Consider the smallest euclidean ball centered at the origin containing \(M \).

Problem #5. Show that there can be no \(C^2 \) isometric embedding \(f : (\mathbb{S}^2, g^T) \to (\mathbb{R}^3, g^E) \).

Hint: Use the previous exercise.