Lecture Questions I: 110.106 Calculus I (Bio \& Soc Sci)

Professor Richard Brown

Mathematics Department
September 25, 2017

Question 1

Determine the truth of the following two statements:
(1) A function can have domain all of \mathbb{R}, have limits on all of \mathbb{R}, and yet not be continuous.
(2) All continuous functions have limits on their domains.
(4) Both are true.
(3) (1) is true and (2) is false.
(9) (1) is false and (2) is true.
(0) Both are false.

Question 2

Which of the recursively defined sequences $\left\{a_{n}\right\}$ below is the only one that converges for $a_{0}=-1$:
(4) $\quad a_{n+1}=\frac{9}{5} a_{n}-\frac{7}{5}$.
(3) $a_{n+1}=\frac{4}{a_{n}}$.

- $\quad a_{n+1}=\frac{3}{a_{n}-2}$.
(-) $a_{n+1}=\frac{1}{2}\left(a_{n}-\frac{4}{a_{n}}\right)$.
(e) $a_{n+1}=a_{n}-1$.

Question 3

Let $f(x)=\sin x$, and $g(x)=\frac{1}{x}$. Determine the truth of the following two statements.
(1) $\lim _{x \rightarrow 0^{+}}(f \circ g)(x)$ exists.
(2) $\lim _{x \rightarrow 0^{+}}(g \circ f)(x)$ exists.
(1) Both are true.
(3) (1) is true and (2) is false.
(-) (1) is false and (2) is true.
(0) Both are false.

Question 3

Let $f(x)=\sin x$, and $g(x)=\frac{1}{x}$. Determine the truth of the following two statements.
(1) $\lim _{x \rightarrow 0^{+}}(f \circ g)(x)$ exists.
(2) $\lim _{x \rightarrow 0^{+}}(g \circ f)(x)$ exists.
(1) Both are true.
(3) (1) is true and (2) is false.
(-) (1) is false and (2) is true.
(0) Both are false.

Question 3

Let $f(x)=\sin x$, and $g(x)=\frac{1}{x}$. Determine the truth of the following two statements.
(1) $\lim _{x \rightarrow 0^{+}}(f \circ g)(x)$ exists.
(2) $\lim _{x \rightarrow 0^{+}}(g \circ f)(x)$ exists.
(1) Both are true.
(3) (1) is true and (2) is false.
(-) (1) is false and (2) is true.
(0) Both are false.

Question 3

Let $f(x)=\sin x$, and $g(x)=\frac{1}{x}$. Determine the truth of the following two statements.
(1) $\lim _{x \rightarrow 0^{+}}(f \circ g)(x)$ exists.
(2) $\lim _{x \rightarrow 0^{+}}(g \circ f)(x)$ exists.
(4) Both are true.
(3) (1) is true and (2) is false.
(-) (1) is false and (2) is true.
(0) Both are false.

What changes if $g(x)=\frac{1}{2 x+1}$?

