Lecture Questions II: 110.106 Calculus I (Bio \& Soc Sci)

Professor Richard Brown

Mathematics Department

October 27, 2017

Question 1

Determine the truth of the following two statements:
(1) For a function to be differentiable, it must be at least continuous.
(2) For a function to have a second derviative, it must at least have a first derivative.
A. Both are true.
B. (1) is true and (2) is false.
C. (1) is false and (2) is true.
D. Both are false.

Question 2

Let $f(x)=\sin x, g(x)=e^{x}, h(x)=\sqrt[3]{x}$, and $i(x)=x^{2}-2 x$. Then the derivative

$$
\frac{d}{d x}[f(g(h(i(x))))]
$$

is zero at which point in the domain of x :
A. $x=0$.
B. $x=1$.
C. $x=2$.
D. $x=3$.

Question 2

Let $f(x)=\sin x, g(x)=e^{x}, h(x)=\sqrt[3]{x}$, and $i(x)=x^{2}-2 x$. Then the derivative

$$
\frac{d}{d x}[f(g(h(i(x))))]
$$

is zero at which point in the domain of x :
A. $x=0$.
B. $x=1$.
C. $x=2$.
D. $x=3$.

Question 2

Let $f(x)=\sin x, g(x)=e^{x}, h(x)=\sqrt[3]{x}$, and $i(x)=x^{2}-2 x$. Then the derivative

$$
\frac{d}{d x}[f(g(h(i(x))))]
$$

is zero at which point in the domain of x :
A. $x=0$.
B. $x=1$.
C. $x=2$.
D. $x=3$.

Question 2

Let $f(x)=\sin x, g(x)=e^{x}, h(x)=\sqrt[3]{x}$, and $i(x)=x^{2}-2 x$. Then the derivative

$$
\frac{d}{d x}[f(g(h(i(x))))]
$$

is zero at which point in the domain of x :
A. $x=0$.
B. $x=1$.
C. $x=2$.
D. $x=3$.

Follow up: Is the derivative undefined at one or more of these points?

Question 3

Recall that the exponential function $g(x)=e^{k x}, k \neq 0$ is always concave up, no matter the choice of k.

Let $f(x)=\log _{a} x$, for $a>0, a \neq 1$. Which of the following statements is the only one that is true?
A. $f(x)$ is concave down on all of $(0, \infty)$.
B. $f(x)$ may be either concave down or concave up on all of $(0, \infty)$, depending on the choice of a.
C. $f(x)$ will be concave down on parts of the domain of f and concave up on other parts.
D. $f(x)$ is not twice differentiable, so it has no concavity.
E. All of the above statements are false.

