Lecture Questions IV: 110.106 Calculus I (Bio & Soc Sci)

Professor Richard Brown

Mathematics Department

November 17, 2017

Determine the truth of the following two statements:

- (1) In an optimization problem, the optimal value of a function happens only where the first derivative is 0 or is undefined.
- (2) When evaluating limits, indeterminate expressions like 0⁰, 1^{∞}, and $\infty \infty$ are really just reworked forms of $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Hence when they occur, we can use L'Hospital's Rule in their study. The same is true for the expressions $\frac{0}{\infty}$ and $\frac{\infty}{0}$.
- A. Both are true.
- B. (1) is true and (2) is false.
- C. (1) is false and (2) is true.
- D. Both are false.

Let
$$F(x) = \int_{2}^{\ln x + \frac{1}{x}} \sqrt{\sin(4t^2) + e^{2t}} dt$$
. Then $F'(x)$ is...

A.
$$\frac{1}{2\sqrt{\sin(4t^2) + e^{2t}}} \left(8t\cos(4t^2) + 2e^{2t}\right) \Big|_2^{\ln x + \frac{1}{x}}$$

B.
$$\sqrt{\sin(4x^2) + e^{2x}} \left(\frac{1}{x} - \frac{1}{x^2}\right)$$
.

C.
$$\sqrt{\sin\left(4\left(\ln x + \frac{1}{x}\right)^2\right)\left(8\ln x + \frac{8}{x}\right)\left(\frac{1}{x} - \frac{1}{x^2}\right) + e^{2\left(\ln x + \frac{1}{x}\right)}\left(\frac{2}{x} - \frac{2}{x^2}\right)}.$$

D.
$$\sqrt{\sin\left(4\left(\ln x+\frac{1}{x}\right)^2\right)+e^{2\left(\ln x+\frac{1}{x}\right)}\left(\frac{1}{x}-\frac{1}{x^2}\right)}$$
.

E. Who, the heck, knows?!?!.

A 🖓

Evaluate $\lim_{x \to 0} \frac{1}{x^2} \int_0^x \sin t \, dt$. The limit ...

- A. exists and is 0.
- B. exists and is 1.
- C. exists and is $\frac{1}{2}$.
- D. is ∞ .
- E. does not exist (and is not ∞).