110.106 CALCULUS I: BIOLOGICAL AND SOCIAL SCIENCES

$$
\text { A Limit Example: } g(x)=\frac{\sin x}{x}
$$

The book has a good calculation using the Squeezing Theorem to show that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Here, I will write a slightly different one, and take a bit more time with the details. I hope that following this will give you some additional insight on how limits work and can be calculated in some interesting ways:
Claim. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
Proof. We will show explicitly that $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1$, like in the book. The argument for the other side limit is almost exactly the same. Let $g(x)=\frac{\sin x}{x}$. Consider the drawing:

For a circle of radius 1 centered at the origin, we know the following:

- the coordinates of the point P are $P=(\cos x, \sin x)$.
- The area of the sector $\varangle(O P Q)=\pi \cdot(1)^{2} \cdot \frac{x}{2 \pi}=\frac{x}{2}$. (See inside back cover of the book for this.)
- The area of the triangle $\triangle(O P Q)=\frac{1}{2}(1)(\sin x)$ since the base is the radius of the circle and the height is the vertical coordinate of P.
- The area of the triangle $\triangle(O R Q)=\frac{1}{2}(1)(\tan x)$. Here again, the base is the radius of the circle. The height, though, is found via the fact that the two right triangles $\triangle(O P S)$ and $\triangle(O R Q)$ are similar. Hence the ratio of their respective right angle sides are equal. The base of $\triangle(O P S)$ is $\cos x$ (why?), so $\frac{\text { height }}{\text { base }}=\frac{\sin x}{\cos x}=\frac{\text { height }(\triangle(O R Q))}{1}$ and, of course, $\frac{\sin x}{\cos x}=\tan x$.

It should be obvious to see the following relationship:

$$
\text { area of } \triangle(O P Q)<\text { area of } \varangle(O P Q)<\text { area of } \triangle(O R Q),
$$

so that

$$
\frac{1}{2} \sin x<\frac{x}{2}<\frac{1}{2} \tan x
$$

But this means

$$
\sin x<x<\tan x
$$

at least when $x \in\left(0, \frac{\pi}{2}\right)$. Also, for $x \in\left(0, \frac{\pi}{2}\right)$, neither x nor $\sin x$ nor $\tan x$ are 0 , and all are positive. Hence inverting this inequality is possible and

$$
\frac{1}{\sin x}<\frac{1}{x}<\frac{1}{\tan x}=\frac{\cos x}{\sin x} .
$$

Now multiply the entire inequality by $\sin x$ to get

$$
1<\frac{\sin x}{x}<\cos x .
$$

Call $f(x)=1$ and $h(x)=\cos x$. Note that f and h are both continuous at $x=0$ and $g(x)$ is continuous near $x=0$ (but not at $x=0!$). And not also that

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} h(x)=1 .
$$

Hence by the Squeezing Theorem, it now follows that

$$
\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}=1 .
$$

Hope this helps.

