Problem. Solve the Ordinary Differential Equation \(\frac{dy}{dx} = \frac{x^2}{1 - y^2} \).

Strategy. Solving the ODE means finding the general solution (the 1-parameter family of solutions). We first note that it is a separable differential equation. But also, it is exact. We will solve this problem both ways.

Solution. This ODE is separable since the right-hand-side can be written as a product of two functions, one solely a function of the independent variable \(x \) and the other of the dependent variable \(y \). Here, we can write

\[
\frac{dy}{dx} = \frac{x^2}{1 - y^2} = x^2 \left(\frac{1}{1 - y^2} \right).
\]

We can separate the variables by dividing the entire equation by the function of the dependent variable:

\[
(1 - y^2) \left[\frac{dy}{dx} = x^2 \left(\frac{1}{1 - y^2} \right) \right]
\]

\[
(1 - y^2) \frac{dy}{dx} = x^2.
\]

Now we can integrate both sides with respect to \(x \)

\[
\int (1 - y^2) \frac{dy}{dx} \, dx = \int (1 - y^2) \, dy = \int x^2 \, dx
\]

\[
y - \frac{y^3}{3} = \frac{x^3}{3} + C.
\]

This is the implicit solution to the ODE.

This ODE is also exact. To see this, rewrite the equation in the general form \(M(x, y) + N(x, y) \frac{dy}{dx} = 0 \). Here,

\[
-x^2 + (1 - y^2) \frac{dy}{dx} = 0.
\]
Recall in the book that a separable ODE is one in the general form where M is solely a function of x and N is solely a function of y. You can see that this is the case, and the ODE is separable.

The criterion for the equation $M(x, y) + N(x, y)\frac{dy}{dx} = 0$ to be exact is for the partial of $M(x, y)$ with respect to y to be equal to the partial of $N(x, y)$ with respect to x, or

$$\frac{\partial M}{\partial y} = M_y = N_x = \frac{\partial N}{\partial x}.$$

However, whenever a ODE is separable, there is no y in the function M and there is no x in the function N: An ODE is separable if it can be written

$$M(x) + N(y)\frac{dy}{dx} = 0.$$

In our case, $M(x, y) = M(x) = -x^2$, and $N(x, y) = N(y) = 1 - y^2$. Thus

$$M_y = 0 = N_x$$

and the ODE is exact.

Note. *Separable first-order ODEs are ALWAYS exact. But many exact ODEs are NOT separable.*

Thus there exists a function $\varphi(x, y)$ which solves the ODE implicitly, and whose partials are the functions M and N. To solve, identify the partial of φ with respect to x with M and integrate with respect to x (to recover φ):

$$\frac{\partial \varphi}{\partial x} = -x^2,$$

and

$$\varphi(x, y) = \int \frac{\partial \varphi}{\partial x} \, dx = \int (-x^2) \, dx = -\frac{x^3}{3} + h(y).$$

So we now have at least some information about the form of the function $\varphi(x, y)$.

Question 1. Why is the constant of integration here the function $h(y)$? This is a very important question!

Now if we take our form for $\varphi(x, y) = -\frac{x^3}{3} + h(y)$, and take the partial with respect to y, we get

$$\frac{\partial \varphi}{\partial y}(x, y) = \frac{\partial}{\partial y} \left[-\frac{x^3}{3} + h(y) \right] = 0 + h'(y).$$

But the partial of φ with respect to y is also precisely the function $N(y) = 1 - y^2$. Hence we equate the two

$$h'(y) = 1 - y^2.$$
Thus using Calculus II, we can find the form for \(h(y) \): We get \(h(y) = y - \frac{y^3}{3} \), so that
\[
\varphi(x, y) = -\frac{x^3}{3} + y - \frac{y^3}{3}.
\]

Finally, the entire original ODE \(M(x, y) + N(x, y)\frac{dy}{dx} = 0 \) is simply a restatement that the total derivative with respect to the independent variable \(x \), assuming \(y \) is an implicit function of \(x \), is zero. This happens along the level curves of \(\varphi(x, y) \):
\[
\frac{d}{dx}\varphi(x, y(x)) = 0 = \frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{dy}{dx} = -x^2 + (1 - y^2) \frac{dy}{dx}.
\]

Thus the general solution to the original ODE is
\[
\varphi(x, y) = C = -\frac{x^3}{3} + y - \frac{y^3}{3},
\]
as before.