Very generally, a first-order ODE of the form
\[\frac{dy}{dx} = f(t, y) \]
will have a solution of both \(t \) and \(y \) and will not be solvable.

However, with some additional structure to \(f \), there are methods to solve. In Chapter 2, we explore some of these.

First type of structure (Section 2.1): Linear

\(f(t, y) = -p(t)y + q(t) \) for some continuous functions \(p(t) \), \(q(t) \).

Then (x) can be rewritten
\[y' = -p(t)y + q(t) \] or
\((\forall x) \quad y' + p(t)y = q(t) \)
This new form exposes a structure that facilitates calculation. The LHS is almost the total derivative of a function. To make it so, we multiply the ODE by an expression called an integrating factor.

Def: An integrating factor is a term that when multiplied to an expression renders the expression integrable.

To understand what we are looking for, look at the patterns here:

Let y be a function of t. Then, for any other function $f(t)$, we have

$$\frac{d}{dt}[f(t)\cdot y] = f(t)\cdot y' + f'(t)\cdot y \quad \text{by Product Rule}$$
And also \(\frac{d}{dt} [e^{\phi(t)} y] = e^{\phi(t)} y' + e^{\phi(t)} p' \phi(t) y \)

\[= e^{\phi(t)} [y' + p' \phi(t) y] . \]

We do this just to look for patterns. In this case, we see an important one: inside the bracket, \([y' + p' \phi(t) y] \) looks very close to the LHS of (2.9) \(y' + p(t) y = q(t) \).

In fact, they are precisely the same when \(p'(t) = p(t) \), or \(\phi(t) = \int p(t) dt \).

So we do one more calculation for a pattern:

\[\frac{d}{dt} \left[e^{\int p(t) dt} y \right] = e^{\int p(t) dt} y' + \frac{d}{dt} \left[e^{\int p(t) dt} \right] y \]

\[= e^{\int p(t) dt} y' + e^{\int p(t) dt} p(t) y \]

\[= e^{\int p(t) dt} [y' + p(t) y] . \]

Precisely the LHS of

(2.9) \(y' + p(t) y = q(t) \)
This is useful because, if we take \(y' + p(t)y = qa \), and multiply the entire eqn by \(e^{\int p(t)dt} \), then the LHS becomes easily integrable.

Call \(e^{\int p(t)dt} \) the integrating factor of

\[y' + p(t)y = q(t). \]

Challenge Q: It turns out, any antiderivative of \(p(t) \) will give the same effect. Why?

Let's play this out and see just how the integrating factor is helpful.

Solve \(y' + p(t)y = q(t) \).
Step 1: Multiply each side by $e^{\text{Spt}\text{dt}}$.

$$e^{\text{Spt}\text{dt}} \left[y' + p(t) y \right] = q(t)$$

$$e^{\text{Spt}\text{dt}} y' + p(t) e^{\text{Spt}\text{dt}} y = e^{\text{Spt}\text{dt}} q(t)$$

$$\frac{d}{dt} \left[e^{\text{Spt}\text{dt}} y \right] = e^{\text{Spt}\text{dt}} q(t).$$

Step 2: Integrate with respect to (wrt) t.

$$\int \frac{d}{dt} \left[e^{\text{Spt}\text{dt}} y \right] dt = \int e^{\text{Spt}\text{dt}} q(t) dt$$

$$e^{\text{Spt}\text{dt}} y = \int e^{\text{Spt}\text{dt}} q(t) dt + C$$

Step 3: Solve for y.

$$y(t) = e^{-\text{Spt}\text{dt}} \left[\int e^{\text{Spt}\text{dt}} q(t) dt + C \right]$$
Notes

1. Practically, we can always do this. The integrating factor $e^{\int P(t)dt}$ is pretty easy to calculate, usually.

2. You do not need to memorise any thing of the form of step 2. Just remember the steps.

3. Any antiderivative of $P(t)$ will do, since they all only differ by a constant.

You are multiplying the entire equation by the factor.

ex. Suppose $P(t) = 2t$. Then $e^{\int 2t dt} = e^{t^2} = e^t$.

If instead you choose $e^{\int 2t dt} = e^{t^2 + c}$, then

$e^{t^2 + c} = e^{t^2}e^c = e^{t^2}k$, for $K = e^c$ constant.

Then $ke^{t^2}[g'(t) + P(t)g = s(t)]$ is seen as $e^{t^2}[g'(t) + P(t)g = s(t)]$.

As far as solutions are concerned.
Some examples

(1) Solve $ty' - 2y = t^2 e^{-2t}$

Strategy: This is linear so we use the int. fact $e^{\int P(t)dt}$ to solve using the 3 steps above.

Solution: Place the ODE in standard form

$$y' - \frac{2}{t} y = t^2 e^{-2t}.$$

This gives us $P(t) = -\frac{2}{t}$, so the int. factor is $e^{\int P(t)dt} = e^{\int -\frac{2}{t} dt} = e^{-2\ln |t|} = e^{\ln t^{-2}} = t^{-2}$.

Step 1: Multiply ODE by int. factor.

$$t^{-2} \left[y' - \frac{2}{t} y = t^2 e^{-2t} \right]$$

$$t^{-2} y' - \frac{2}{t} \cdot \frac{y}{t} = e^{-2t}$$

$$\frac{d}{dt} \left[t^{-2} y \right] = e^{-2t}$$

Step 2: Integrate w.r.t. t.

$$\int \frac{d}{dt} \left[t^{-2} y \right] dt = t^{-2} y + c_1 = \int e^{-2t} dt = -\frac{1}{2} e^{-2t} + c_2$$

$$t^{-2} y = -\frac{1}{2} e^{-2t} + K$$

Step 3: Solve for $y(t)$:

$$y(t) = -\frac{1}{2} t^2 e^{-2t} + K t^2$$

This $y(t)$ solves the ODE.
Check to see if this is correct:

\[
\begin{align*}
-t\,e^{-2t} + t^2\,e^{-2t} + 2kt &- \frac{2\,k}{t} \left(-\frac{1}{2} t^2 e^{-2t} + kt^2 \right) = t^2 e^{-2t} \\
\frac{d}{dt} \left[t^2 e^{-2t} \right] &- 2te^{-2t} + 2kt + t^2 e^{-2t} - 2kt^2 = t^2 e^{-2t} \\
t^2 e^{-2t} &= t^2 e^{-2t}
\end{align*}
\]

Solution:

\(x + 2tx = t^3 \). Solve this.

Strategy: Use the integrating factor on this linear ODE to integrate through to an expression for \(x(t) \).

Solution: This ODE is linear, with \(p(t) = 2t \).

Thus the int. factor is

\[e \int_{\text{left}} \, dt = e^{\int 2t \, dt} = e^{t^2} \]

Step 1: Multiply ODE by int. factor:

\[e^{t^2} \left[x + 2tx = t^3 \right] \]

\[e^{t^2} x + 2te^{t^2} x = t^3 e^{t^2} \]

\[\frac{d}{dt} \left[e^{t^2} x \right] = t^3 e^{t^2} \]
Step 2: Integrate with t.

\[\int \frac{d}{dt} [e^t \cdot x] \, dt = e^t \cdot x + C_1 = \int e^t \cdot t^2 \, dt \]

\[\int e^t \cdot t^2 \, dt = \frac{\text{Subst.}}{s = t^2} \frac{1}{2} \int s \cdot e^s \, ds \]

\[\frac{1}{2} \int s \cdot e^s \, ds = \frac{1}{2} (s \cdot e^s - \int e^s \, ds) = \frac{1}{2} (s \cdot e^s - e^s) + C_2 \]

Combine constants to get:

\[e^t \cdot x = \frac{1}{2} e^{t^2} (t^2 - 1) + K \]

Step 3: Solve for \(x(t) \).

This is the general solution to \(x + 2tx = t^3 \)

\[x(t) = \frac{1}{2} t^2 - \frac{t}{2} + Ke^{-t^2} \]

Check this:

\[\left(t - 2Kt \cdot e^{-t^2} \right) + 2t \left(\frac{1}{2} t^2 - \frac{t}{2} + Ke^{-t^2} \right) = t^3 \]

\[t^2 - 2Kt \cdot e^{-t^2} + t^3 - t + 2Kt \cdot e^{-t^2} = t^3 \]

\[t^3 = t^3 \quad \text{of works} \]
Solve \(\frac{dx}{ds} = \frac{x}{s} - s^2 \), for \(s > 0 \)

Here the ODE is again linear (note \(s \) is the independent variable), and \(p(s) = -\frac{1}{s} \).

The integrating factor is then
\[
e^{\int p(s)ds} = e^{\int -\frac{1}{s} ds} = e^{-\ln s} = e^{-\ln s} s^{-1} = s^{-1}
\]

Multiply through standard form of ODE to get

\[
\frac{1}{s} \left[\frac{dx}{ds} - \frac{x}{s} = -s^2 \right] \Rightarrow \frac{1}{s} \frac{dx}{ds} - \frac{x}{s^2} = -s
\]

Integrate wrt \(s \) to get

\[
\frac{1}{s} x = \int (-s) ds + C = -\frac{s^2}{2} + C
\]

Solve for \(x(s) \):

\[
x(s) = -\frac{s^3}{2} + Cs
\]

This is the general solution to ODE

Check it:

\[
\left(-\frac{3}{2} s^2 + C \right) = \frac{1}{s} \left(-\frac{s^3}{2} + Cs \right) - s^2
\]

\[
\frac{\frac{d}{ds}}{x} \left(-\frac{3}{2} s^2 + C \right) = -s^2
\]

\[
-\frac{3}{2} s^2 + C = -\frac{s^2}{2} + C - s^2
\]

\[
-\frac{3}{2} s^2 = -\frac{3}{2} s^2 \quad \sqrt{\text{It is correct.}}
\]
Find the general solution to
\[
 t(y' - y) = (1 + t^2) e^t \quad \text{on } t > 0.
\]

Here, try to see why this is linear, with
\[
p(t) = -1.
\]

The solution is
\[
y(t) = e^t (\ln t + \frac{t^2}{2} + c)
\]

This solution is drawn up in a separate document under example problems on the website.

Solve \(\frac{dp}{dt} = \frac{p}{2} - 450 \) using an integrating factor.

Solution: This is an exercise. You already know the answer.