Before talking about the cases where roots of the characteristic equation are real or not real, let's return to the more general linear 2nd order homogeneous ODE

\[y'' + p(t)y' + q(t)y = 0 \]

To study this, form the operator

(An operator is a function whose domain and range are functions)

\[L[y] = y'' + p(t)y' + q(t)y. \]

This operator is defined for all \(C^2 \) functions \(y(t) \) on an interval like \(a < t < b \), where \(a \) may be a number or \(-\infty\), and \(b \) may be a number or \(\infty \).
Notes

1. Can also write
\[L = \frac{d^2}{dt^2} + p \frac{d}{dt} + q \]

2. Observe: An operator \(\mathcal{L} \psi_1 \) is linear if
\[\mathcal{L}[c_1 \psi_1 + c_2 \psi_2] = c_1 \mathcal{L}[\psi_1] + c_2 \mathcal{L}[\psi_2] \]

Consider: \(\mathcal{L}[\psi] = \psi'' + p(t) \psi' + q(t) \psi \)
is linear, as an operator.

\[\mathcal{L}[c_1 \psi_1 + c_2 \psi_2] = \frac{d^2}{dt^2}[c_1 \psi_1 + c_2 \psi_2] \]

\[+ p(t) \frac{d}{dt}[c_1 \psi_1 + c_2 \psi_2] + q(t)(c_1 \psi_1 + c_2 \psi_2) \]

\[= c_1 \psi_1'' + c_2 \psi_2'' + p(t)(c_1 \psi_1' + c_2 \psi_2') \]

\[+ q(t)(c_1 \psi_1 + c_2 \psi_2) \]

\[= c_1 (\psi_1'' + p(t) \psi_1' + q(t) \psi_1) \]

\[+ c_2 (\psi_2'' + p(t) \psi_2' + q(t) \psi_2) \]

\[= c_1 \mathcal{L}[\psi_1] + c_2 \mathcal{L}[\psi_2] \]
Fact: The homogeneous 2nd order linear ode
\[y'' + p(t)y' + q(t)y = 0 \]
is solved by any function \(y(t) \), where
\[L[y(t)] = 0. \]

2 Theorems on linear, 2nd order ODEs

1) Existence & Uniqueness

Theorem: The IVP \(y'' + p(t)y' + q(t)y = g(t) \),
\[y(t_0) = y_0, \quad y'(t_0) = y'_0, \]
where \(p, q, \) and \(g \) are continuous on an open interval \(I \) containing \(t_0 \), has a unique solution \(y(t) \)
defined and twice differentiable on \(I \).

Note: Here, \(I \) can be taken to be the largest interval containing \(t_0 \), where \(p, q, \) and \(g \) are all simultaneously continuous.
Ⅳ Superposition

Then $y_1(t), y_2(t)$ are 2 solutions to $L[y] = 0$, then so is $c_1 y_1 + c_2 y_2$
for all $c_1, c_2 \in \mathbb{R}$.

Caution: Unless y_1 and y_2 are chosen carefully, there may be other solutions.
We need to know what carefully means here.