Lecture 15:

Let's go back to the original linear, 2nd order ODE:

\[L[y] = y'' + p(t)y' + q(t)y = g(t) \]

where \(p, q, \) and \(g \) are all continuous on some open interval \(I \), and \(g(t) \neq 0 \) (the non-homogeneous case).

Cauchy: \((x) \) is linear, but superposition does not hold here.

Then suppose \(\Sigma_1(t) \) solves \(L[y] = g_1(t) \) and \(\Sigma_2(t) \) solves \(L[y] = g_2(t) \).

Then \(\Sigma_1 + \Sigma_2 \) solves \(L[y] = g_1(t) + g_2(t) \).

Proof: \(L[y] \) is linear, so

\[L[\Sigma_1 + \Sigma_2] = L[\Sigma_1] + L[\Sigma_2] = g_1(t) + g_2(t) \]

Corollary: Suppose \(\Sigma_1(t) \) and \(\Sigma_2(t) \) both solve \(L[y] = g(t) \). \(\Rightarrow \) \(\Sigma_1(t) - \Sigma_2(t) \) solves \(L[y] = 0 \).
Using this, we can construct solutions to \(L[y] = g(x) \).

Let \(L[y] = g(x) \) be non-homogeneous, and \(\Sigma_1(x), \Sigma_2(x) \) be 2 solutions.

Let \(c_1 \Sigma_1(x) + c_2 \Sigma_2(x) \) be a fundamental set of solutions to the homogeneous \(L[y] = 0 \).

By Corollary, \(\Sigma_2(x) - \Sigma_1(x) \) is also a solution to \(L[y] = 0 \), so

1. \(\Sigma_2 - \Sigma_1 = c_1 \Sigma_1 + c_2 \Sigma_2 \) for some choice of constants \(c_1, c_2 \in \mathbb{IR} \), and

2. \(\Sigma_2 = \underbrace{c_1 \Sigma_1 + c_2 \Sigma_2 + \Sigma_1}_{\text{any other solution to } L[y] = g(x)} \) a solution to \(L[y] = g(x) \).

We use this to construct a general solution to \(L[y] = g(x) \).
Then the general solution to $Ly = g(t)$ is

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \Phi(t)$$

where y_1, y_2 form a fundamental set of solutions to $Ly = 0$, and $\Phi(t)$ is any particular solution to $Ly = g(t)$.

This gives us a method for solving a nonhomogeneous 2nd order linear ODE $Ly = g(t)$:

1. First, solve $Ly = 0$
2. Find any solution to $Ly = g(t)$
3. Put these together to construct the general solution.

The new part here is 2, which can be hard.

But there are ways in limited cases. Here, we highlight 2 ways. (Both involve guessing...)
Undetermined Coefficients.

Suppose \(L[y] = g(t) \) has the following form:

1. **Homogeneous part has constant coefficients**
2. \(g(t) \) is a sum of products of:
 - exponentials
 - sines and cosines
 - polynomials

Then you can assume a solution \(\Sigma(t) \) is of the same type (written out with appropriate unknown coefficients and constants).

Substitute \(\Sigma(t) \) into \(L[y] = g(t) \) and try to solve for the coefficients and constants.

\[
\exp 1 y'' - 2y' - 3y = 3e^{2t}.
\]

Here, a fund set of solutions to homogeneous part is \(e_1 e^{2t} + e_2 e^{-t} \)

Assume \(\Sigma(t) = A e^{2t} \). Then \(\frac{d^2}{dt^2} (A e^{2t}) + 2 \frac{d}{dt} (A e^{2t}) - 3(A e^{2t}) \)

\[
= 3e^{2t}.
\]

\[
\Rightarrow 4A e^{2t} - 4A e^{2t} - 3A e^{2t} = 3e^{2t}.
\]
This is solved for $A = -1$. Hence
\[y(t) = -e^{2t} \] is a solution to $y'' - 2y' + 3y = 3e^{2t}.$

Thus the general solution to $y'' - 2y' + 3y = 3e^{2t}$ is
\[y(t) = c_1 e^{3t} + c_2 e^{-t} - e^{2t} \]

Exercise: Solve $y'' - 2y' - 3y = 3 \sin 3t$

Here homogeneous part is same as e^{kt}. Assume
\[y(t) = A \sin 3t + B \cos 3t. \] (Why so?)

Because of derivatives y' and y''!

Then
\[
\frac{d^2}{dt^2} (y(t)) - 2 \frac{dy}{dt} (y(t)) - 3y(t) = 3 \sin 3t
\]
\[-9A \sin 3t - 9B \cos 3t - 2(3A \cos 3t - 3B \sin 3t) - 3(A \sin 3t + B \cos 3t) = 3 \sin 3t \]

Here there are 2 equations to solve:

\[
\begin{align*}
\sin e & : & -9A + 6B - 3A = 3 & \iff -12A + 6B = 3 \\
\cos e & : & -9B - 6A - 3B = 0 & \iff -6A - 12B = 0 \\
\end{align*}
\]

Solved by $A = -\frac{1}{3}$, $B = \frac{1}{10}$.

Hence the solution is
\[y(t) = c_1 e^{3t} + c_2 e^{-t} - \frac{1}{3} \sin 3t + \frac{1}{10} \cos 3t. \]
Here are many warnings here.

The chart on page 132 gives the general rules for constructing the assumption \(\Gamma(t) \) for given \(g(t) \).

Notes

1. When \(g(t) \) actually looks like one of the pieces of the fundamental set of solutions to \(L[y] = 0 \), one must choose \(\Gamma(t) \) accordingly.

2. If \(L[y] \) includes a polynomial, one must include unknown constants for every intermediate degree monomial.

3. Be careful of the \(s \). When \(g(t) \) has a piece that looks like one of the third set of solutions to \(L[y] = 0 \), one must multiply by \(t^s \) where \(s \) is the smallest positive power that removes the problem.