In preparation for the study of non-linear systems, Section 9.1 is a review of linear systems theory, but given solely in terms of understanding how to characterize the type and stability of the equilibrium solution at the origin of the phase plane.

General Facts

- Solutions to \(\dot{\mathbf{x}} = A\mathbf{x} \) are typically constructed from exponentials \(\mathbf{x}(t) = \frac{1}{2} \mathbf{v} e^{\mathbf{r}t} \)
 where \(\mathbf{r}, \mathbf{v} \) are eigenvalue/eigenvector pairs of \(A \). Here \(\mathbf{v} \) satisfies \((A-\mathbf{r}I)\mathbf{v} = 0 \) for \(\mathbf{r} \) a solution to the characteristic equation of \(A \): \(\det(A-\mathbf{r}I) = 0 \).
General facts cont'd.

- If \(r = 0 \) is not a solution to \(\det(A - \lambda I) = 0 \), then \(\mathbf{x} = |L_0| \) is the only equilibrium solution of the ODE.

- Solutions are integral curves, parameterized by \(t \), in the \(x_1, x_2 \)-plane (phase plane) and a representative sample of curves is called a phase portrait.

- The general shape of the phase portrait determines the type of the equilibrium at \(L_0 \) and the direction of travel along solutions determines the stability of \(L_0 \).

- Both type and stability of \(L_0 \) are fully determined by the eigenvalues of \(A \) alone.
General facts cont'd.

- Classification of x for $x' = Ax + x$: For $F = \mathbb{R}$, $F \neq 0$,

Case I: $\gamma_1 \neq \gamma_2$ real

Here, origin is a

- sink $\gamma_1 < 0, \gamma_2 < 0$ asymptotically stable
- source $\gamma_1 > 0, \gamma_2 > 0$ unstable
- saddle $\gamma_1 < 0, \gamma_2 > 0$, or $\gamma_1 > 0, \gamma_2 < 0$, also unstable

Notice that both a source and a saddle are unstable. But there is a difference. Can you characterize it?
Case II: $\gamma = \lambda + i\mu$, $\mu \neq 0$
Eigenvalues are complex conjugates

Here, origin is a
- spiral sink $\lambda < 0$, asymptotically stable
- spiral source $\lambda > 0$, unstable
- center $\lambda = 0$, stable
(no asymptotically stable)

Case III $\gamma_1 = \gamma_2$ (must be real)

Here, origin is a
- star node $\lambda > 0$, unstable
- $\lambda < 0$, asymptotically stable
- star sink

16 enough eigenvectors to construct 2 solutions (fixed)
- improper node 16 More or not enough eigenvectors to construct 2 lin. indep. solutions.
Many 2x2 systems of 1st order homogeneous ODEs are not linear (in the dependent variables)

\[\begin{align*}
 \dot{x} &= F(x, y) \\
 \dot{y} &= G(x, y)
\end{align*} \]

although still autonomous (t is not explicit in the ODE, even as it always is in the solutions).

In vector form, (1) is written \(\mathbf{x}' = \mathbf{F}(\mathbf{x}) \),

where \(\mathbf{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \), \(\mathbf{F}(\mathbf{x}) = \begin{bmatrix} F(x, y) \\ G(x, y) \end{bmatrix} = \begin{bmatrix} F(x, y) \\ G(x, y) \end{bmatrix} \).

Note: Solutions to (1), written as \(\mathbf{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \)

are sometimes given a different notation like \(\mathbf{y}(t) = \begin{bmatrix} y(t) \\ z(t) \end{bmatrix} \) when the context encourages it.

Ex. We can write any \(\mathbf{x}' = A \mathbf{x} \) in the notation of (1), for \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), as

\(F(x, y) = ax + by \)

\(G(x, y) = cx + dy \)
Note: In a non-linear system like (*), there can be more than one isolated singularity (equilibrium solution). Also the origin need not be an equilibrium.

Def. A pt $\overline{p} \in \mathbb{R}^2$ is a *critical point* of the system $\dot{x} = f(x)$ if $f(\overline{p}) = 0$. Critical pts are equilibrium of the system: $\dot{y}(t) = \overline{p}, \forall t \in \mathbb{R}$.

Note: The stability of a critical point \overline{p} of $\dot{x} = f(x)$ is determined in the same way as that of a linear system; by determining how solutions behave around \overline{p}.

Recall the Lotka-Volterra eqns

\[
\begin{align*}
\dot{x} &= a_1 x - b_1 xy = f(x, y) \\
\dot{y} &= -a_2 y + b_2 xy = g(x, y)
\end{align*}
\]

$a_1, a_2, b_1, b_2 > 0$
ex. For $a_1 = 2, a_2 = 3, b_4 = 1, b_2 = 4$
Find all critical pts.

Solution: Here, ODE system is
\[\begin{align*}
\dot{x} &= 2x - xy = x(2-y) = F(x,y) \\
\dot{y} &= -3y + 4xy = g(4x-3) = G(x,y)
\end{align*} \]

We look for $\dot{x} = 0 \iff F(x,y) = 0 = C(x,y)$.
Here \(C \) is domain is critical. Need to find another, assume $x \neq 0$. Then for $F(x,y) = 0$, we must have $y = 2$. Then if $y = 2$, for $G(x,y) = 0$, we must have $x = \frac{3}{4}$.

So $x = \frac{3}{4}, y = 2$ is also critical.

Thus are the only two.

ex. Find all critical pts of g
\[\begin{align*}
\dot{x} &= x - x^2 - xy \\
\dot{y} &= -y - y^2 + 2xy
\end{align*} \]
and discuss stability via the JODE phase portrait.

Note: This is Lotka-Volterra with extra terms.
Solution: We seek all solutions to system

\[\begin{align*}
F(x, y) &= x - x^2 - xy = x(1-x-y) = 0 \\
G(x, y) &= -y - y^2 + 2xy = y(-1-y-2x) = 0.
\end{align*} \]

We do this by cases:

1. \(x = y = 0 \). The origin is critical.

2. Let \(y = 0 \) and assume \(x \neq 0 \). Then \(\frac{\partial G}{\partial x} = 0 \). For \(F(x, y) = 0 \) also, we need \(1 - x - y = 0 = 1 - x \). Hence \(x = 1 \).

 Hence \(x = 1, y = 0 \) is critical.

3. Let \(x = 0 \) and assume \(y \neq 0 \). Now \(F(x, y) = 0 \) and to ensure \(\frac{\partial G}{\partial x} = 0 \) also, we need

 \[-1 - y - 2x = -1 - y - 2(0) = 0. \]

 So \(y = -1 \).

 Hence \(x = 0, y = -1 \) is critical.
Assume $x \neq 0$ and $y \neq 0$. Then $F(x,y) = 0$ only if $1 - x - y = 0$ or along the line $y = 1 - x$. And $G(x,y) = 0$ only when $-1 - y - 2x = 0$, or along the line $y = 2x - 1$.

Both F and G are 0 where these lines intersect: $x + y = 1$ solved by
$$
2x - y = 1 \quad \Rightarrow \quad x = \frac{2}{3}, \quad y = \frac{1}{3}.
$$

Hence $x = \frac{2}{3}, y = \frac{1}{3}$ is critical.

What do you see in the phase portrait?

- $[0,0]$, $[0,1]$ are saddles
- $[0,1]$ is an improper source?
- $[\frac{1}{3},\frac{2}{3}]$ is a spiral sink.

At this point, these are really just guesses.
2 more definitions

Def. Let the critical pt \tilde{p} of $\tilde{x}' = \tilde{f}(x)$ be asymptotically stable (a sink). Then the set

$$B(\tilde{p}) = \left\{ x^0 \in \mathbb{R}^2 \mid \lim_{t \to \infty} \tilde{x}(t) = \tilde{p}, \tilde{x}(\epsilon t) = x^0 \right\}$$

is called the basin of attraction of \tilde{p} under $\tilde{x}' = \tilde{f}(x)$. It is the set of all $x^0 \in \mathbb{R}^2$ whose solutions pass through an asymptote to \tilde{p}.

Def. If a solution $\tilde{x}(t)$ to $\tilde{x}' = \tilde{f}(x)$ comprises part of the boundary of a basin of attraction, it is called a separatrix.

Note: More strictly, hyperbolic or non-equilibrium noncritical solutions whose solution behavior is different on each side.
Lastly, a different viewpoint in phase plane analysis:

ex. Solve the system

\[\begin{align*}
 \dot{x} &= 4 - 2y \\
 \dot{y} &= 12 - 3x^2
\end{align*} \]

Note: This system is non-linear (and non-homogeneous). Why is this so?

Solution: We can easily calculate the critical points here. \(4 - 2y = 0\) only when \(y = 2\). And \(12 - 3x^2 = 0\) when \(x = \pm 2\). Hence \(x = 2, y = 2\), and \(x = -2, y = 2\) are the only critical points.

But this is limited information.

Another tack? Remove the parameter \(t\) from the solutions by writing \(y\) directly (indirectly) in terms of \(x\). This involves a clever use of the Chain Rule (in Leibniz notation)
ex. For $a_1 = 2$, $a_2 = 3$, $b_4 = 1$, $b_2 = 4$

Find all critical pts.

Solution: Here, ODE system is

\[\dot{x} = 2x - xy = x(2 - y) = f(x, y) \]
\[\dot{y} = -3y + 4xy = y(4x - 3) = g(x, y) \]

We look for $\dot{\mathbf{x}} = [\dot{x}, \dot{y}]$ where $F(x, y) = 0 = G(x, y)$, here \odot the origin is critical. Need to find another, assume $x \neq 0$. Then for $F(x, y) = 0$, we must have $y = 2$. Then if $y = 2$, for $G(x, y) = 0$, we must have $x = \frac{3}{4}$.

So \odot $x = \frac{3}{4}$, $y = 2$ is also critical.

Here are the only two.

ex. Find all critical pts of

\[\dot{x} = x - x^2 - xy \]
\[\dot{y} = -y - y^2 + 2xy \]

and discuss stability via the JODE

Note: This is the Lotka-Volterra model with extra terms. Called Competitor Species.

phase portrait.
Suppose we wanted to parametrize a curve given by \(y = g(x) \). Write \(x \) as some function of \(t \). Then \(y \) is also a function of \(t \) given by \(y(t) = g(x(t)) \). By diff., we get \(y'(t) = g'(x(t)) \cdot x'(t) \), or in Leibniz notation \(\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \), so \(\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \).

We can rewrite this process and write this system of ODEs into a single 1st order ODE:

1. \(x' = \frac{dx}{dt} = 4 - 2y \)
2. \(y' = \frac{dy}{dt} = 12 - 3x^2 \)

One can solve this as an exact ODE given by

\[\frac{dy}{dx} - \frac{12 - 3x^2}{4 - 2y} = 0 , \quad or \quad (4 - 2y) \frac{dy}{dx} - (12 - 3x^2) = 0 \]

solved to give \(y(x, y) = 4y - y^2 - 12x + x^3 = C \).
Level sets of $y(x,v)$ correspond to solution curves:

more general version of a separatrix