Differential Equations – Singular Solutions

Consider the first-order separable differential equation: \(\frac{dy}{dx} = f(y)g(x) \). \((1) \)

We solve this by calculating the integrals: \(\int \frac{dy}{f(y)} = \int g(x)dx + C. \) \((2) \)

If \(y_0 \) is a value for which \(f(y_0) = 0 \), then \(y = y_0 \) will be a solution of the above differential equation \((1) \). We call the value \(y_0 \) a critical point of the differential equation and \(y = y_0 \) (as a constant function of \(x \)) is called an equilibrium solution of the differential equation.

If there is no value of \(C \) in the solution formula \((2) \) which yields the solution \(y = y_0 \), then the solution \(y = y_0 \) is called a singular solution of the differential equation \((1) \).

The “general solution” of \((1) \) consists of the solution formula \((2) \) together with all singular solutions.

Note: by “general solution”, I mean a set of formulae that produces every possible solution.

Example 1: Solve: \(\frac{dy}{dx} = (y - 3)^2. \) \((3) \)

Solution: \(\int \frac{dy}{(y - 3)^2} = \int dx. \) Thus, \(\frac{-1}{y - 3} = x + C; \) \(y - 3 = \frac{-1}{x + C}; \) and \(y = 3 - \frac{1}{x + C}, \) \((4) \)

where \(C \) is an arbitrary constant.

Both sides of the DE \((3) \) are zero when \(y = 3 \). No value of \(C \) in \((4) \) gives \(y = 3 \) and thus, the solution \(y = 3 \) is a singular solution.

The general solution of \((3) \) consists of: \(y = 3 - \frac{1}{x + C} \) (\(C \) is an arbitrary constant) and \(y = 3. \)

See over \(\Rightarrow \)
Example 2: Solve: \[\frac{dy}{dx} = y^2 - 4. \] (5)

Solution: \[\int \frac{dy}{y^2 - 4} = \int dx. \] Using partial fractions,

\[\int \frac{dy}{(y - 2)(y + 2)} = \int \left[\frac{1}{4} \left(\frac{1}{y - 2} + \frac{-1}{y + 2} \right) \right] dy = \int dx. \]

Thus, \[\int \left[\frac{1}{y - 2} + \frac{-1}{y + 2} \right] dy = \int 4 dx. \]

Integrating, \[\ln(y - 2) - \ln(y + 2) = 4x + C. \]

Taking exponentials, \[\frac{y - 2}{y + 2} = e^{4x} C_1 = s \text{ (say).} \]

Then,
\[
\begin{align*}
y - 2 &= s(y + 2) = sy + 2s \\
y - sy &= 2 + 2s \\
y(1 - s) &= 2 + 2s \\
y &= \frac{2 + 2s}{1 - s}.
\end{align*}
\]

Thus,
\[y = \frac{2 + 2C_1 e^{4x}}{1 - C_1 e^{4x}}, \] (6)

where \(C_1 \) is an arbitrary constant.

Both sides of the DE (5) are zero when \(y = \pm 2 \). If we put \(C_1 = 0 \) in (6), we obtain the solution: \(y = 2 \). However, no value of \(C_1 \) in (6) gives \(y = -2 \) and thus, the solution \(y = -2 \) is a singular solution.

The general solution of (5) consists of:
\[y = \frac{2 + 2C_1 e^{4x}}{1 - C_1 e^{4x}} \text{ (} C_1 \text{ is an arbitrary constant) and } y = -2. \]