Section 7.2

In the same way that we integrated functions (real-valued) and vector fields over curves, we can do so on surfaces.

I Real-valued (scalar) functions

- Like for scalar line integrals, if the surface \(\mathbf{S} \) in \(\mathbb{R}^3 \) is inside the domain of a real-valued function in \(\mathbb{R}^3 \), we can restrict the domain to the surface and integrate.
- If we parameterize the surface with coordinates on the surface, this is like a double integral.
- However, the resulting value should be parameter independent.
- Basically, we look to define
 \[\iint_{\mathbf{S}} f \, d\mathbf{S}, \text{ where } d\mathbf{S} = \lVert N(s,t) \rVert \, ds \, dt \]
 is a surface differential.
Def. Let \(\mathbf{X} : \mathcal{D} \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be a smooth parametric surface, where \(\mathcal{D} \) is bounded. Let \(f \) be a \(C^0 \) function on a domain that includes \(\mathbf{X} \). Then the scalar surface integral of \(f \) along \(\mathbf{X} \) is

\[
\iint_{\mathcal{D}} f(\mathbf{X}(s,t)) \left\| \mathbf{X}_s \times \mathbf{X}_t \right\| \, ds \, dt
\]

\[
= \iint_{\mathcal{D}} f(x(s,t), y(s,t), z(s,t)) \sqrt{\left(\frac{dx}{ds} \right)^2 + \left(\frac{dy}{ds} \right)^2 + \left(\frac{dz}{ds} \right)^2} \, ds \, dt
\]

Notes:
1. Like for line integrals, \(ds \) is a scalar 2-form (\(ds \) as a scalar 1-form) and represents a infinitesimal element in surface area along the surface.
2. For \(f(x,y,z) = 1 \), this integral gives the surface area of \(\mathbf{X}(\mathcal{D}) \).
3. In coordinates \((s,t) \), this looks like a standard double integral.
4. If \(\mathbf{X} \) is not smooth but has edges (piecewise smooth) then each smooth piece must be integrated separately and the results added together.
Def. Let $\mathbf{X} : D \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a smooth normal surface, where D is bounded. Let \mathbf{F} be a C^1-vector field on a domain in \mathbb{R}^3 that includes $\mathbf{X}(D)$. Then the vector surface integral

\mathbf{F} along \mathbf{X} is

$$
\iint_{\mathcal{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \mathbf{N}(s,t) \, ds \, dt
$$

$$
= \iint_{D} \mathbf{F}(x(s,t), y(s,t), z(s,t)) \cdot \begin{bmatrix}
\frac{\partial y}{\partial t} & \frac{\partial y}{\partial s} & 0 \\
0 & \frac{\partial z}{\partial t} & \frac{\partial z}{\partial s} \\
1 & 0 & 0
\end{bmatrix}
\, ds \, dt.
$$

Notes:

1. Here $d\mathbf{S} = \mathbf{N}(s,t) \, ds \, dt$ is a vector 2-form.

2. If we normalize the normal vector

$$
\mathbf{N}(s,t) = \frac{\mathbf{N}(s,t)}{\|\mathbf{N}(s,t)\|}, \quad \text{then}
$$

$$
\iint_{\mathcal{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \frac{\mathbf{N}(s,t)}{\|\mathbf{N}(s,t)\|} \, ds \, dt = \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \frac{\mathbf{N}(s,t) \cdot \mathbf{N}(s,t)}{\|\mathbf{N}(s,t)\|^2} \, ds \, dt
$$

$$
= \iint_{D} \mathbf{F}(\mathbf{X}(s,t)) \cdot \mathbf{N}(s,t) \, ds \, dt
$$
The vector surface integral of a vector field equals the scalar surface integral of the normal component of the vector field to the surface.

Interpretation: \(\iint_{S} \mathbf{F} \cdot d\mathbf{S} \) measures the vector field flow through the surface. This is called the \textit{flux} of \(\mathbf{F} \) through \(S(0) \).

Compare this to \(\oint_{C} \mathbf{F} \cdot d\mathbf{r} \), the circulation. The vector field flow along \(\gamma(0) \).

Other facts

1. Given a parametrization \(\mathbf{X}: D_{1} \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) and a \(C^{1} \) 1-1, onto \(\Phi: D_{2} \rightarrow D_{1} \), with inverse \(\Phi^{-1}: D_{1} \rightarrow D_{2} \), a parametrization of \(\mathbf{X} \) is \(\overline{\mathbf{X}}: D_{2} \rightarrow \mathbb{R}^{2} \), where \(\overline{\mathbf{X}} = \mathbf{X} \circ \Phi^{-1} \).
Here $\overrightarrow{x}(s,t) = (\overrightarrow{x} \circ H)(s,t) = \overrightarrow{x}(u(s,t), v(s,t))$.

where $H : D_2 \to D$, H is a bijection map with inverse, and

$H^{-1}(s,t) = (u(s,t), v(s,t))$.
A parametrization is called smooth if both \mathbf{X} and \mathbf{Y} are and if H is C^1.

II

Thm. For $f \in C^0$ on a domain including a smooth $\mathbf{X} : D \to \mathbb{R}^3$, then for any smooth parametrization \mathbf{Y} of \mathbf{X},

$$\iint_{\mathbf{X}} f \, ds = \iint_{\mathbf{Y}} f \, ds$$

III

For a curve, an orientation is a choice of continuously varying unit tangent vector along \mathbf{X}.

For a surface, an orientation is a choice of continuously varying unit normal vector along \mathbf{X} (above us, below, inside us outside).

orientable

non-orientable
(IV) \[\text{Then if a reparameterization preserves orientation (i.e., Jacobian(T) > 0 everywhere),} \]
\[\Rightarrow \int \mathbf{F} \cdot d\mathbf{S} = \int \mathbf{F} \cdot d\mathbf{S} \]
otherwise introduce a minus sign to \(\mathbf{F} \).

Note: Recall \(\mathbf{N}(s,t) = \mathbf{X}_s \times \mathbf{X}_t = -\mathbf{X}_t \times \mathbf{X}_s \).

(V) Orient the surface automatically orient boundary curves on that surface.

Let \(S \) be an oriented surface with boundary in \(\mathbb{R}^3 \). \(\partial S \) is a piecewise \(C^1 \) closed curve.

Let \(\partial p \in \partial S \), where
\[\partial p = (s_0, t_0) = (x(s_0, t_0), y(s_0, t_0), z(s_0, t_0)) \]
and choose \(\tilde{c} : [a,b] \rightarrow S \subset \mathbb{R}^3 \) a smooth curve such that \(\tilde{c}(a) = \partial p \), and \(\tilde{c} \) ends at \(\partial p' \).
Define \(\overrightarrow{n}(p) = \lim_{t \to 0} \overrightarrow{n}(\overrightarrow{c}(t)) \), and
\[
\overrightarrow{v}(t) = \lim_{t \to 0} \overrightarrow{c}'(t).
\]
Here, \(\overrightarrow{n} \) and \(\overrightarrow{v} \) are based at \(\overrightarrow{p} \) and are perpendicular.
Hence, they determine a 2D subspace containing \(\overrightarrow{v} \) and \(\overrightarrow{n} \).

Then \(\overrightarrow{n} \times \overrightarrow{v} \) is perpendicular to both and using the RHR, determines a unique direction on \(s \).

This is the direction used in Green's Theorem!