Question 1. For the functions \(f \) and points \(a \) indicated, calculate \(Df(a) \):

(a) \(f(x, y, z) = (2x - 3y + 5z, x^2 + y, \ln(yz)) \), and \(a = (3, -1, -2) \).

(b) \(f \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x^2y \\ x + y^2 \\ \cos \pi xy \end{bmatrix} \), and \(a = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \).

Question 2. Explain fully why the function \(f(x, y) = \left(\frac{xy^2}{x^2 + y^2}, \frac{x}{y} + \frac{y}{x} \right) \) is differentiable at every point of its domain.

Question 3. Find equations for the following spaces:

(a) All planes tangent to \(z = x^2 - 6x + y^3 \) that are parallel to the plane \(4x - 12y + z = 7 \).

(b) The hyperplane tangent to the 4-dimensional paraboloid \(x_5 = 10 - (x_1^2 + 3x_2^2 + 2x_3^2 + x_4^2) \) at the point \((2, -1, 1, 3, -8) \).

Question 4. Let \(g(x, y) = \sqrt{xy} \), do the following:

(a) Determine if \(g \) is continuous at \((0, 0)\).

(b) Calculate the partials of \(g \), when \(xy \neq 0 \).

(c) Show that \(g_x(0, 0) \) and \(g_y(0, 0) \) exist by finding the limits.

(d) Determine if the partials are continuous at \((0, 0)\).

(e) Determine if the graph of \(g \) has a tangent plane at \((0, 0)\). It is not necessary, but if you want, show the graph of \(g \).

(f) Determine if \(g \) is differentiable at \((0, 0)\).

Question 5. Do the following:

(a) Verify the Sum Rule for derivatives when \(f(x, y, z) = (xyz^2, xe^{-y}, y\sin xz) \) and \(g(x, y, z) = (x - y, x^2 + y^2 + z^2, \ln(xz + 2)) \).

(b) Verify the Product and Quotient Rules for derivatives when \(f(x, y) = x^2 y + y^3 \) and \(g(x, y) = \frac{x}{y} \).
(c) Verify that the Product Rule holds for the derivative of a cross product in \(\mathbb{R}^3\). That is, directly calculate \(Dh(x)\), for \(h : \mathbb{R}^3 \to \mathbb{R}^3\), \(h(x) = f(x) \times g(x)\), where \(f : \mathbb{R} \to \mathbb{R}^3\) and \(g : \mathbb{R} \to \mathbb{R}^3\) are \(C^1\) functions, and show that it equals the Product Rule \(Dh(x) = Df(x) \times g(x) + f(x) \times Dg(x)\).

Question 6. For the function \(F(x, y, z) = 2x^3y + xz^2 + y^3z^5 - 7xyz\), do the following:

(a) Calculate \(F_{xx}, F_{yy}, F_{zz}\).

(b) Calculate all mixed second-partials and verify in all cases that the order in taking partials does not matter.

(c) Determine if \(F_{xy} = F_{yx}\). If so, use the mixed partials theorem to show that this must be the case.

(d) Do the same for \(F_{xz}\) and \(F_{yz}\).

Question 7. Let \(f(x, y, z) = \ln\left(\frac{xy}{z}\right)\). Give general formulas for \(\frac{\partial^n f}{\partial x^n}, \frac{\partial^n f}{\partial y^n}\), and \(\frac{\partial^n f}{\partial z^n}\) where \(n \geq 1\). What can you say about the mixed partials?

Question 8. Let

\[
F(x, y) = \begin{cases}
xy \left(\frac{x^2 - y^2}{x^2 + y^2}\right) & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } (x, y) = (0, 0).
\end{cases}
\]

(a) Find \(f_x(x, y)\) and \(f_y(x, y)\) for \((x, y) \neq (0, 0)\).

(b) Either by hand (using limits), or by using part (a), find the partial derivatives \(f_x(0, y)\) and \(f_y(x, 0)\).

(c) Find the values to \(f_{xy}(0, 0)\) and \(f_{yx}(0, 0)\). Reconcile this with Theorem 4.3 in the text on page 137, on the equality of mixed partials.

Question 9. Do the following:

(a) If \(f(x, y) = \sin(xy)\) and \(x = s + t\) and \(y = s^2 + t^2\), find \(\frac{\partial f}{\partial s}\) and \(\frac{\partial f}{\partial t}\), both by direct substitution, and by means of the Chain Rule.

(b) Suppose that \(z = x^2 + y^3\), where \(x = uv\) and \(y\) is also some function of \(u\) and \(v\). Suppose further that, when \((u, v) = (2, 1)\), then \(\frac{\partial y}{\partial v} = 0\). Determine \(\frac{\partial z}{\partial v}(2, 1)\).