Question 1. Can you solve
\[x_2y_2 - x_1 \sin y_1 = 5 \]
\[x_2 \sin y_1 + x_1 y_2 = 2 \]
for \(y_1, y_2 \) as functions of \(x_1, x_2 \) near the point \((x_1, x_2, y_1, y_2) = (2, 3, \pi, 1)\)? What about near the point \((x_1, x_2, y_1, y_2) = (0, 2, \frac{\pi}{2}, \frac{5}{2})\)?

Question 2. Consider the system:
\[
\begin{cases}
 x_1 y_2^2 - 2x_2 y_3 = 1 \\
 x_1 y_1^2 + x_2 y_2 - 4y_2 y_3 = -9 \\
 x_2 y_1 + 3x_1 y_2^2 = 12
\end{cases}
\]

(a) Show that, near the point \((x_1, x_2, y_1, y_2, y_3) = (1, 0, -1, 1, 2)\), it is possible to solve for \(y_1, y_2,\) and \(y_3\) in terms of \(x_1\) and \(x_2\).

(b) From the results of part (a), we may consider \(y_1, y_2,\) and \(y_3\) to be functions of \(x_1\) and \(x_2\). Use implicit differentiation and the Chain Rule to evaluate each of \(\frac{\partial y_1}{\partial x_1}(1, 0), \frac{\partial y_2}{\partial x_1}(1, 0),\) and \(\frac{\partial y_3}{\partial x_1}(1, 0)\).

Question 3. Let \(x(t) \in \mathbb{R}^n \) be a differentiable curve such that \(\| x(t) \| = c > 0 \), for all \(t \). Show that \(x(t) \cdot x'(t) = 0 \), for every \(t \).

Question 4. For the curve \(x(t) = (t \sin t, t \cos t, t^2) \), do the following:

(a) Calculate the speed, velocity and acceleration of the curve.

(b) Show that the curve, for \(t \in [-20, 20] \), lies on the paraboloid \(S \) defined by the equation \(z = x^2 + y^2 \).

Question 5. Do the following:

(a) Sketch the path of \(x(t) = (t, t^3 - 2t + 1) \).

(b) Calculate the line tangent to \(x \) at \(t = 2 \).

(c) Eliminate the parameter \(t \) by writing the curve as a function \(y = f(x) \).

(d) Verify by calculation that the line you calculated in part (b) is the same line one calculates as the tangent line to the graph of \(f \) in part (c).
Question 6. Verify the Product Rule for calculating the velocity of a curve in \mathbb{R}^3, given as the cross product of two other curves in \mathbb{R}^3. That is, for two differentiable curves $x, y : \mathbb{R} \to \mathbb{R}^3$, define $z = x \times y$ and show that

$$\frac{dz}{dt} = \frac{dx}{dt} \times y + x \times \frac{dy}{dt}.$$

Question 7. Calculate the length of each of the paths:

(a) $x(t) = 7i + tj + t^2k$, for $1 \leq t \leq 3$.

(b) $y(s) = \left(\ln s, \frac{s^2}{2}, \sqrt{2}s \right)$, with $s \in [1, 4]$.

Question 8. For the path $x(t) = (e^{-t} \cos t, e^{-t} \sin t)$, do the following:

(a) Argue that the path spiral in toward the origin at $t \to \infty$.

(b) Show that, for any choice of $a \in \mathbb{R}$, the improper integral

$$\int_a^\infty ||x'(t)|| \; dt$$

converges.

(c) Interpret what the result from part (b) says about the path x.

Question 9. Sketch the following vector fields:

(a) $F = (x, x^2)$.

(b) $G = (y, -x, 2)$.

Question 10. Show that the vector field $F = 2xi + 2yj - 3k$ is a gradient vector field. Describe the equipotential surfaces of F both in words and in sketches.

Question 11. Show that the curve $x(t) = (\sin t, \cos t, e^{2t})$ is a flow line off the vector field $F = (y, -x, 2z)$.