Homework

1. Consider the following four functions. Determine which extend (i.e., can be analytically continued) to an entire function (i.e., a holomorphic function on the entire complex plane) and which cannot. Remember to justify your answers.
(a) (10 points) $f_{1}(x+i y)=u(x, y)+i v(x, y)$ where $u(x, y)=x^{2}+y^{2}-1$ and $v(x, y)=2 x y$. Hint: Consider the Cauchy-Riemann equations.
(b) (10 points) $f_{2}(z)=z^{2}-1$.
(c) (10 points) $f_{3}(z)=\sum_{n=1}^{\infty} n^{-n}(z-2)^{n}$
(d) (10 points) $f_{4}(z)=\sum_{n=1}^{\infty} n^{2} z^{n}$.
2. (a) (20 points) Use a contour integral to carry out the the following computation:

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x=\frac{\pi}{e}
$$

Hint: Use as contours the semi-circles of radius R with keyhole at $z=i$ and that if $z=x+i y$ and $y \geq 0$, then $|\exp (i z)|=\exp (-y) \leq 1$.
3. (a) (10 points) Compute $\int_{\partial D_{1}(0)} \bar{z} d z$ where $\partial D_{1}(0)$ is the unit circle with positive orientation. Use this to explain why there is no holomorphic function $f: D_{2}(0) \rightarrow \mathbb{C}$ with $f(z)=\bar{z}$ for $z \in \partial D_{1}(0)$.
(b) (10 points) Show that if $g: D_{2}(0) \backslash\{0\} \rightarrow \mathbb{C}$ is holomorphic and $g(z)=\bar{z}$ for $z \in \partial D_{1}(0)$, then $g(z)=\frac{1}{z}$. Why does this not contradict part a)?
4. (20 points) Use the Cauchy inequalities to show that if f is an entire function that satisfies

$$
|f(z)| \leq C|z| \log (1+|z|)
$$

for all $z \in \mathbb{C}$, then $f(z)=0$ for all $z \in \mathbb{C}$. Hint: Determine $\lim _{r \rightarrow \infty} \frac{\log (1+r)}{r}$ and $\lim _{r \rightarrow 0^{+}} \frac{\log (1+r)}{r}$ and use the first limit to show $f(z)=a z+b$.

