pages	$2-3$	4	5	6	$7-8$	$9-10$	11	total
scores								

Exam \#2, October 29, Calculus II (109), Fall, 2010, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.
Name: \qquad Date: \qquad

TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK. (26 points total)

In case you need them: $\cos (2 x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$.

1. (2 points) Compute the slope of the graph of the polar coordinate equation $r=1-\sin (\theta)$ when it crosses the x-axis, $x>0$.
2. (3 points) Compute the polar coordinates and the xy-coordinates for the point where y is maximal $(x>0)$ on the graph of the polar coordinate equation $r=1-\sin (\theta)$.
3. (3 points) Compute the polar coordinates and the xy-coordinates for the point where x is maximal for the graph of the polar coordinate equation $r=1-\sin (\theta)$.
4. (2 points) Compute the area enclosed by the graph of the polar coordinate equation $r=1-\sin (\theta)$ when both x and y are greater than or equal to zero $(x, y \geq 0)$.
5. (2 points) Determine if this integral is improper. If it is, determine if it converges or diverges. Explain all. If it converges, compute it. $\int_{0}^{3} \frac{d x}{(x-3)^{2}}$
6. (2 points) Determine if this integral is improper. If it is, determine if it converges or diverges. Explain all. If it converges, compute it. $\int_{4}^{\infty} \frac{d x}{(x-3)^{2}}$
7. (2 points) Determine if this integral is improper. If it is, determine if it converges or diverges. Explain all. If it converges, compute it. $\int_{-3}^{0} \frac{d x}{(x-3)^{2}}$
8. (2 points) Give a rough sketch of the graph given by the parametric equations: $x=t^{3}-4 t$, and $y=4-t^{2}$.
9. (2 points) Give the equation for the tangent line to the graph given by the parametric equations: $x=t^{3}-4 t$, and $y=4-t^{2}$, when it passes through the origin the first time (i.e. for the smallest value of t).
10. (2 points) Find the xy-coordinates of the graph for the maximum value of x when $y>0$ for the curve given by the parametric equations: $x=t^{3}-4 t$, and $y=4-t^{2}$.
11. (2 points) Set up the integral for the length of the curve for the part of the graph above the x -axis for the curve given by the parametric equations: $x=t^{3}-4 t$, and $y=4-t^{2}$.
12. (2 points) Find the area enclosed by the graph for the part of the graph above the x-axis for the curve given by the parametric equations: $x=t^{3}-4 t$, and $y=4-t^{2}$.
