THE JOHNS HOPKINS UNIVERSITY
 Faculty of Arts and Sciences
 MIDTERM EXAM - SPRING SESSION 2009
 110.109 - CALCULUS II.

Examiner: Professor C. Consani
Duration: 50 MINUTES (10am-10:50am), March 6, 2009.

No calculators, books, notes allowed.
Total Points $=100$

Student Name: \qquad

Ethic Stat.: I agree to complete this exam without unauthorized assistance from any person, materials or device.

Student Signature: \qquad

TA Name (circle one): A. Banerjee, S. Khan, A. Saltz

1.	
2.	
3.	
4.	
Total	

1. [25 points]

Find an antiderivative for the function

$$
f(x)=\left(1+x^{2}\right)^{-\frac{3}{2}}
$$

Use the substitution $x=\tan (u)$, so that $d x=\sec ^{2}(u) d u$

$$
\begin{aligned}
\int \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}} & =\int \frac{\sec ^{2}(u) d u}{\left(1+\tan ^{2}(u)\right)^{\frac{3}{2}}}=\int \frac{\sec ^{2}(u) d u}{\left(\sec ^{2}(u)\right)^{\frac{3}{2}}}=\int \frac{\sec ^{2}(u) d u}{\left(\sec ^{3}(u)\right)}=\int \frac{d u}{\sec (u)} \\
& =\int \cos (u) d u=\sin (u)+C
\end{aligned}
$$

Using the similarity between two right triangles with a common angle u, we determine that

$$
\sin (u)=\frac{x}{\sqrt{x^{2}+1}}
$$

Therefore

$$
\int \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}}=\frac{x}{\sqrt{x^{2}+1}}+C
$$

2. [25 points] Let \mathcal{R} be the region bounded by the curves $y=x^{3}, x=0$ and $y=1$.
a) Use the washer method to find the volume of the solid obtained by rotating \mathcal{R} about the x -axis.

Solution: The outer edge of the washer is created by the line $y=1$, so the outer radius is just 1 . The inner radius is created by the curve $y=x^{3}$. Because we are rotating about the x -axis, we can see from a diagram that the inner radius is y and that the width of a washer is $d x$. The curves $y=x^{3}$ and $y=1$ intersect at $(1,1)$. Combining all this

$$
V=\int_{0}^{1} \pi(1)^{2}-\pi(y)^{2} d x=\int_{0}^{1} \pi-\pi\left(x^{3}\right)^{2} d x=\pi\left[x-\frac{x^{7}}{7}\right]_{0}^{1}=\pi\left(1-\frac{1}{7}\right)=\frac{6 \pi}{7}
$$

b) Find, by applying the method of cylindrical shells, the volume of the solid obtained by rotating the region \mathcal{S} bounded by the curves $y=x^{2}+4, y=2 x^{2}$, and $x=0$, about the y-axis.
Solution: We use cylindrical shells

$$
\text { Volume }=2 \pi \int_{0}^{2} x\left(x^{2}+4-2 x^{2}\right) d x=2 \pi \int_{0}^{2} 4 x-x^{3} d x=2 \pi\left[2 x^{2}-\frac{x^{4}}{4}\right]_{0}^{2}=8 \pi
$$

3. [25 points]

Consider the curve given in parametric equations:

$$
x(t)=12 t-t^{3} ; \quad y(t)=6 t^{2}
$$

a) Determine the points on the curve at which the tangent lines are vertical and horizontal.
b) Find the area of the region contained inside the loop of the curve

Solution:

$$
\frac{d y}{d x}=\frac{12 t}{12-3 t^{2}}=\frac{4 t}{4-t^{2}}
$$

Hence: at $(x(0), y(0))=(0,0)$ the tangent line is horizontal and at $(x(\pm 2), y(\pm 2))$ the tangent lines are vertical

$$
\text { Area }=2 \int_{0}^{2 \sqrt{3}}\left(12 t-t^{3}\right)(12 t) d t=24\left[4 t^{3}-\frac{1}{5} t^{5}\right]_{0}^{2 \sqrt{3}}=\frac{2^{9} 3^{2} \sqrt{3}}{5}
$$

4. [25 points]

Find the length of the arc of the curve

$$
y=\ln \left(1-x^{2}\right)
$$

from the point $(0,0)$ to the point $\left(\frac{1}{2}, \ln (3)-\ln (4)\right)$
Solution: This is an application of the arc length formula

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\ln \left(1-x^{2}\right)\right)=\frac{-2 x}{1-x^{2}}
$$

It follows that the length of the arc is

$$
\begin{aligned}
L & =\int_{0}^{\frac{1}{2}} \sqrt{\left(\frac{d y}{d x}\right)^{2}+1} d x=\int_{0}^{\frac{1}{2}} \sqrt{\left(\frac{-2 x}{1-x^{2}}\right)^{2}+1} d x=\int_{0}^{\frac{1}{2}} \sqrt{\frac{4 x^{2}}{1-2 x^{2}+x^{4}}+1} d x= \\
& =\int_{0}^{\frac{1}{2}} \sqrt{\frac{4 x^{2}+1-2 x^{2}+x^{4}}{1-2 x^{2}+x^{4}}} d x=\int_{0}^{\frac{1}{2}} \sqrt{\frac{1+2 x^{2}+x^{4}}{1-2 x^{2}+x^{4}}} d x=\int_{0}^{\frac{1}{2}} \sqrt{\frac{\left(1+x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}} d x= \\
& =\int_{0}^{\frac{1}{2}} \frac{1+x^{2}}{1-x^{2}} d x
\end{aligned}
$$

Using long division, we find

$$
L=\int_{0}^{\frac{1}{2}}-1+\frac{1}{1+x}+\frac{1}{1-x} d x=[-x+\ln (1+x)-\ln (1-x)]_{0}^{\frac{1}{2}}=\ln (3)-\frac{1}{2}
$$

