THE JOHNS HOPKINS UNIVERSITY
 Faculty of Arts and Sciences
 MIDTERM EXAM - SPRING SESSION 2009
 110.109 - CALCULUS II.

Examiner: Professor C. Consani
Duration: 50 MINUTES (10am-10:50am), April 24, 2009.

No calculators, books, notes allowed.
Total Points $=100$

Student Name: \qquad
Ethic Stat.: I agree to complete this exam without unauthorized assistance from any person, materials or device.

Student Signature: \qquad

TA Name (circle one): A. Banerjee, S. Khan, A. Saltz

Problem	Score
1	
2	
3	
4	
Total	

1. [25 points] For what values of p is the following integral finite? Fully explain your answer

$$
\int_{1}^{\infty} x^{p} d x
$$

$\underline{\text { Solution For } p \neq-1 \text { and for any } b>1, b \in \mathbb{R}, ~(1)}$

$$
\int_{1}^{b} x^{p} d x=\frac{b^{p+1}}{p+1}-\frac{1}{p+1}
$$

$\lim _{b \rightarrow \infty} \frac{b^{p+1}}{p+1}-\frac{1}{p+1}<\infty$ only if $p+1 \leq 0$. Since we have assumed $p \neq-1$, the inequality in fact means $p<-1$. The case $p=-1$ yields

$$
\int_{1}^{b} x^{p} d x=\log b
$$

$\lim _{b \rightarrow \infty} \log b=\infty$. Therefore the improper integral converges for $p<-1$.
2.[25 points] Determine if the following series are conditionally convergent, absolutely convergent, or divergent. Justify and explain your answer
(a)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(-1)^{n} n^{2009}}{n!} \\
& \sum_{n=1}^{\infty} \frac{2+\cos (n)}{n^{2}}
\end{aligned}
$$

Solution (a) The factorial in the denominator suggests that the Ratio Test might be useful. We test it: let $a_{n}=\frac{(-1)^{n} n^{2009}}{n!}$, then

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2009}}{(n+1)!}}{\frac{n^{2009}}{n!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2009}}{(n+1)!} \cdot \frac{n!}{n^{2009}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2009} \cdot \frac{n!}{(n+1)!}= \\
=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2009} \cdot \frac{1}{n+1}=0<1
\end{gathered}
$$

By the Ratio Test, this series converges absolutely.
(b) Recall that $-1 \leq \cos (n) \leq 1$, so $\frac{2+\cos (n)}{n^{2}} \leq \frac{3}{n^{2}}$ for all $n \geq 1$.
$\sum_{n=1}^{\infty} \frac{3}{n^{2}}=3 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$, so it converges. By the Comparison Test, $\sum_{n=1}^{\infty} \frac{2+\cos (n)}{n^{2}}$ is also convergent. All the terms in these series are positive, so we can just say "convergent" (absolutely convergent is technically true as well).
3. [25 points]
(a) Compute the MacLaurin series of $f(x)=x e^{x}$ (i.e. the Taylor series at $x=0$).
(b) Integrate the series in (a) from 0 to 1 to show that

$$
\sum_{k=0}^{\infty} \frac{1}{(k+2) k!}=1
$$

(You may assume that the MacLaurin series of $f(x)$ coincides with $f(x)$ on $[0,1]$).
Solution (a) This can be done two ways. First, we recall that the Taylor series of $g(x)=e^{x}$ at $x=0$ is

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

So the MacLaurin series of $f(x)=x e^{x}$ is

$$
x \sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{x^{k+1}}{k!}
$$

Alternatively, we can compute the Taylor series of $f(x)$ at $x=0$ directly:

$$
\begin{aligned}
f(x) & =0 \\
f^{\prime}(x) & =x e^{x}+e^{x} \\
f^{\prime \prime}(x) & =\left(x e^{x}+e^{x}\right)^{\prime}=x e^{x}+e^{x}+e^{x}=x e^{x}+2 e^{x} \\
f^{\prime \prime \prime}(x) & =\left(x e^{x}+2 e^{x}\right)^{\prime}=x e^{x}+e^{x}+2 e^{x}=x e^{x}+3 e^{x} .
\end{aligned}
$$

It follows that $f^{(k)}(x)=x e^{x}+k e^{x}$ and that in particular, $f^{(k)}(0)=k$. Therefore

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(0) x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{k x^{k}}{k!}=\sum_{k=1}^{\infty} \frac{x^{k}}{(k-1)!}=\sum_{k=0}^{\infty} \frac{x^{k+1}}{k!}
$$

is the MacLaurin series for $f(x)$.
(b) It follows from (a) that $x e^{x}=\sum_{k=0}^{\infty} \frac{x^{k+1}}{k!}$, at least on $[0,1]$. So

$$
\int_{0}^{1} x e^{x} d x=\int_{0}^{1} \sum_{k=0}^{\infty} \frac{x^{k+1}}{k!}
$$

Also, by applying the technique of integration by parts with $u=x, d v=e^{x}$

$$
\int_{0}^{1} x e^{x} d x=\left.x e^{x}\right|_{0} ^{1}-\int_{0}^{1} e^{x} d x=e-0-(e-1)=1
$$

On the other hand

$$
\int_{0}^{1} \sum_{k=0}^{\infty} \frac{x^{k+1}}{k!} d x=\sum_{k=0}^{\infty} \int_{0}^{1} \frac{x^{k+1}}{k!} d x=\left.\sum_{k=0}^{\infty} \frac{x^{k+2}}{(k+2) k!}\right|_{x=0} ^{x=1}=\sum_{k=0}^{\infty} \frac{(1)^{k+2}}{(k+2) k!}=\sum_{k=0}^{\infty} \frac{1}{(k+2) k!}
$$

4. [25 points] Determine the largest interval of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{\arctan |x|^{n}}{n+|\sin (n x)|}
$$

$\left(\arctan (x)=\tan ^{-1}(x) . \quad\right.$ You may use the inequality: $\left.\arctan |x| \leq|x|\right)$
Solution We apply the Comparison Test

$$
\frac{\arctan |x|^{n}}{n+|\sin (n x)|} \leq \frac{|x|^{n}}{n}
$$

and study the convergence of the series $\sum_{n \geq 1} \frac{|x|^{n}}{n}$. To this series we apply the Root Test

$$
\lim _{n \rightarrow \infty} \frac{|x|}{\sqrt[n]{n}}=|x|
$$

Then, the above series (and hence the original one) is convergent for $|x|<1$.
At $|x|=1, \lim _{n \rightarrow \infty} \frac{\frac{\pi}{4}}{n+|\sin (n)|}=0$, however $\frac{\frac{\pi}{4}}{n+|\sin (n)|} \geq \frac{\frac{\pi}{4}}{n+1}$ and $\sum_{n \geq 1} \frac{\frac{\pi}{4}}{n+1}=\infty$. Therefore by applying the Comparison Test we conclude that the original series is divergent at $|x|=1$.

When $|x| \geq 1$, we notice that $\frac{\frac{\pi}{4}}{n+1} \leq \frac{\arctan |x|^{n}}{n+|\sin (n x)|}$, and the series $\sum_{n \geq 1} \frac{\frac{\pi}{4}}{n+1}$ is divergent. Then, we conclude that the largest interval of convergence of the original series is $(-1,1)$.

