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Question 1. [20 points] Do the following:

(a) Find the value of

∫ π
4

0
tan3 θ sec4 θ dθ.

Solution: Two things to notice first: (1) tan2 θ+1 = sec2 θ, and (2) d
dθ

tan θ = sec2 θ. Thus we can

write ∫ π
4

0
tan3 θ sec4 θ dθ =

∫ π
4

0
tan3 θ sec2 θ sec2 θ dθ =

∫ π
4

0
tan3 θ

(
tan2 θ + 1

)
sec2 θ dθ.

We use the substitution x = tan θ, dx = sec2 θ dθ (along with the limits: when θ = 0, x = 0, and when

θ = π
4
, we have x = 1), and get∫ π

4

0
tan3 θ

(
tan2 θ + 1

)
sec2 θ dθ =

∫ 1

0
x3

(
x2 + 1

)
dx

=

∫ 1

0

(
x5 + x3

)
dx =

∫ 1

0

(
x6

6
+

x4

4

) ∣∣∣∣∣
1

0

=
1

6
+

1

4
=

5

12
.

(b) Find an antiderivative of the function f(x) =
x− 1

(x− 2)(x− 3)
.

Solution: This question asks to calculate

∫
x− 1

(x− 2)(x− 3)
dx. To this end, decompose the ratio-

nal function f(x) into the sum two simpler rational functions:

x− 1

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
,

where the two constants A and B are unknown. Recombining the fractions on the right, we get

x− 1

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3

=
A(x− 3)

(x− 2)(x− 3)
+

B(x− 2)

(x− 2)(x− 3)

=
Ax− 3A+Bx− 2B

(x− 2)(x− 3)
=

(A+B)x+ (−3A− 2B)

(x− 2)(x− 3)
.

Equating the rational functions on the ends of this last set of equations yields two equations in

the two unknowns:

A+B = 1

−3A− 2B = −1.

Solving these yields A = −1 and B = 2. Thus∫
x− 1

(x− 2)(x− 3)
dx =

∫ (
−1

x− 2
+

2

x− 3

)
dx

= −
∫

1

x− 2
dx+ 2

∫
1

x− 3
dx = − ln |x− 2|+ 2 ln |x− 3|+ C.
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Question 2. [20 points] Solve exactly one of the following 2 first-order differential equations (you
must choose which one is your solution by circling either (a) or (b)):

(a) xy′ = x lnx+ y, y(e) = 0.

Solution: This differential equation is linear (though not separable). Written in standard form,

we get y′ −
1

x
y = lnx. The integrating factor is

e−
∫ 1

x
dx = e− ln x = eln x−1

= eln
1
x =

1

x
.

Multiply through the differential equation to get

1

x
y′ −

1

x2
y =

lnx

x
or

d

dx

[
1

x
y

]
=

lnx

x
.

Integrate both sides with respect to x. The left hand side is straightforward (antiderivative of a

derivative). To get the right hand side, use the substitution u = lnx, du = 1
x
dx. So∫

d

dx

[
1

x
y

]
dx =

∫
lnx

x
dx

1

x
y =

∫
u du+ C =

u2

2
+ C =

(lnx)2

2
+ C.

Solving for y, we finally get

y(x) =
x(lnx)2

2
+ Cx.

And with the initial data,

y(e) =
e(ln e)2

2
+ Ce =

e

2
+ Ce = 0.

This is solved by C = − 1
2
. Our final solution is

y(x) =
x(lnx)2

2
−

x

2
=

x

2

(
(lnx)2 − 1

)
.

(b) x2yy′ + y = y2, y(1) = 0.

Solution: This differential equation is separable (and also linear!).

METHOD 1 Linear: Divide the entire equation by the common y and manipulate to put it

in standard form to get y′ −
1

x2
y = −

1

x2
. The integrating factor is

e
−

∫ 1
x2 dx

= e
1
x ,

and upon multiplication, we get

e
1
x

(
y′ −

1

x2
y = −

1

x2

)
or e

1
x y′ − e

1
x

1

x2
y = −e

1
x

1

x2
or

d

dx

[
e

1
x y

]
= −e

1
x

1

x2
.

Integrate both sides with respect to x. The left hand side is straightforward (antiderivative of a

derivative). To get the right hand side, use the substitution u = 1
x
, du = − 1

x2 dx. So∫
d

dx

[
e

1
x y

]
dx =

∫
−e

1
x

1

x2
dx

e
1
x y =

∫
eu du+ C = eu + C = e

1
x + C.

Solving for y, we finally get

y(x) = 1 + Ce−
1
x .

And with the initial data,

y(1) = 1 + Ce−
1
1 = 1 +

C

e
= 0.

This is solved by C = −e, and our final solution is y(x) = 1 + e−1e−
1
x = 1 + e−(1+ 1

x ).
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METHOD 2 Separable: Divide the entire equation by the common y and manipulate to

sole for y′. We get y′ =
y − 1

x2
. Written in differential form (to prepare for integration), we have

1

y − 1
dy =

1

x2
dx.

Integrate each side with respect to its only variable to get∫
1

y − 1
dy =

∫
1

x2
dx or ln |y − 1| = −

1

x
+ C.

Whenever two expressions are equal, the exponentials of the expressions are also equal, and

eln |y−1| = e−
1
x
+C or |y − 1| = e−

1
x eC or y − 1 = Ke−

1
x ,

where we can relax the absolute values by allowing the constant to assume negative values. And

finally, solving for y, we get

y(x) = 1 +Ke−
1
x .

Note this is the same solution as in Method 1 above. And with the initial data,

y(1) = 1 +Ke−
1
1 = 1 +

K

e
= 0.

This is solved by K = −e, and our final solution is y(x) = 1 + e−1e−
1
x = 1 + e−(1+ 1

x ).

Question 3. [15 points] For the parameterization

x(t) = 2t− π sin t

y(t) = 2− π cos t,

find the equations of all tangent lines to the curve at the point (0, 2).

-2 -1 1 2

-1

1

2

3

4

Solution: First, we need to find the values of t that correspond to the point (x, y) = (0, 2). For
y(t) = 2, we will need to solve y(t) = 2− π cos t = 2. This means cos t = 0 which is solved by t = ±π

2
. Back

in the equation for x, we find that both

x(t)
∣∣∣
t=π

2

= x
(π

2

)
= 2

(π

2

)
− π sin

(π

2

)
= π − π = 0, and

x(t)
∣∣∣
t=−π

2

= x
(
−
π

2

)
= 2

(
−
π

2

)
− π sin

(
−
π

2

)
= −π + π = 0.

Now, for t = π
2
, we get

dy

dx

∣∣∣∣∣
(x,y)=(0,2)

=

dy
dt

∣∣∣
t=π

2

dx
dt

∣∣∣
t=π

2

=

(π sin t)
∣∣∣
t=π

2

(2− π cos t)
∣∣∣
t=π

2

=
π

2− 0
=

π

2
.

Hence, using the point-slope form for the equation of a line, we get

y − 2 =
π

2
(x− 0) or y =

π

2
x+ 2.

Note that the other equation is almost exactly the same (the slope includes a minus sign), and we get

y = −π
2
x+ 2.
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Question 4. [15 points] Find the total area inside of the polar curve r = 2 + sin θ and outside the polar
curve r = 3 sin θ.

-2 -1 1 2

-1

1

2

3

Solution: First, Note here that there is only one intersection point between these two curves, at
θ = π

2
. Hence one curve always lives “inside” the other, and integration is only about finding the area

of each and subtracting. In this case, the “inside” curve is the circle, or the one-leaf rose r = 3 sin θ.

Hence we find the area inside each curve using the formula

Area =

∫ β

α

1

2
[f(θ)]2 dθ,

and subtract the area inside the outside curve from that of the inside curve. Note that the limits in
this area formula must be found so that we trace out the curve exactly once in each case. The formula
for the area we seek is

Area between curves =

∫ 2π

0

1

2
[2 + sin θ]2 dθ −

∫ π

0

1

2
[3 sin θ]2 dθ.

Here are some of the (overly) detailed calculations:

Area between curves =

∫ 2π

0

1

2
[2 + sin θ]2 dθ −

∫ π

0

1

2
[3 sin θ]2 dθ

=

∫ 2π

0

1

2

(
4 + 4 sin θ + sin2 θ

)
dθ −

∫ π

0

9

2
sin2 θ dθ

=

∫ 2π

0

(
2 + 2 sin θ +

1

2

(
1

2
+

1

2
cos 2θ

))
dθ −

∫ π

0

9

2

(
1

2
+

1

2
cos 2θ

)
dθ

=

∫ 2π

0

(
2 + 2 sin θ +

1

4
+

1

4
cos 2θ

)
dθ −

∫ π

0

(
9

4
+

9

4
cos 2θ

)
dθ

=

(
2θ − 2 cos θ +

1

4
θ +

1

8
sin 2θ

) ∣∣∣∣∣
2π

0

−
(
9

4
θ +

9

8
sin 2θ

) ∣∣∣∣∣
π

0

=

((
2(2π)− 2 cos 2π +

1

4
(2π) +

1

8
sin 2(2π)

)
−

(
2(0)− 2 cos 0 +

1

4
(0) +

1

8
sin 2(0)

))
−

((
9

4
π +

9

8
sin 2π

)
−

(
9

4
(0) +

9

8
sin 2(0)

))
=

(
9

2
π − 2

)
+ 2−

9

4
π =

9

4
π.

Notice that the area inside the outside curve is 9
2
π, and the area inside the inside curve (the circle) is

9
4
π. Further noticing that the inside curve is a circle, you could have appealed directly to geometry,

and said that the radius of the inside curve is 3
2
, so that the area inside the circle is π

(
3
2

)2
= 9

4
π.
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Question 5. [30 points] Given the parameterization x(t) = 2
3 t

3 + 1 and y(t) = 3 − t2 on the interval
0 ≤ t ≤ 1, do the following:

(a) Calculate the total arc-length of the curve.

Solution: The formula for the arc-length of a parameterized curve is

Arc-length =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

In our case, α = 0, β = 1, and the formula is

Arc-length =

∫ 1

0

√
(2t2)2 + (−2t)2 dt

=

∫ 1

0

√
4t4 + 4t2 dt

=

∫ 1

0
2t
√

t2 + 1 dt.

This last integral is perfectly set up for a standard substitution of u = t2+1, du = 2t dt, with limits:
When t = 0, u = 1, and when t = 1, u = 2. We get

Arc-length =

∫ 1

0
2t
√

t2 + 1 dt =

∫ 2

1

√
u du =

1

2
√
u

∣∣∣2
1
=

1

2
√
2
−

1

2
.

Simplify if you want, but that is the answer.

(b) Find the area between the curve and the x-axis.

Solution: The formula for the area “under” a parameterized curve is

Area =

∫ β

α
y(t)x′(t) dt.

In our case again, α = 0, β = 1, and the formula is

Area =

∫ 1

0

(
3− t2

)
(2t2) dt =

∫ 1

0

(
6t2 − 2t4

)
dt =

(
6

3
t3 −

2

5
t5
) ∣∣∣1

0
= 2−

2

5
=

8

5
.

Simplify if you want, but that is the answer.
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Possibly helpful formulae

• sin2 θ =
1

2
− 1

2
cos 2θ • cos2 θ =

1

2
+

1

2
cos 2θ

• sin2 θ + cos2 θ = 1 • tan2 θ + 1 = sec2 θ

• sin 2θ = 2 cos θ sin θ • cos 2θ = cos2 θ − sin2 θ

• sin (−θ) = − sin θ • cos (−θ) = cos θ

.

θ sin θ cos θ tan θ

0 0 1 0

π
6

1
2

√
3
2

1√
3

π
4

√
2
2

√
2
2

1

π
3

√
3
2

1
2

√
3

π
2

1 0 −


