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Question 1. [10 points] Solve exactly one of the following 2 improper integral problems (you must
choose which one is your solution by circling either (a) or (b)):

(a) Calculate (or show it does not exist)

∫ 1

0

e−
√
x

√
x

dx.

Solution: This integral is improper since the integrand is not defined at the lower limit.

So first, we correct the problem, and write

∫ 1

0

e−
√

x

√
x

dx = lim
a→0+

∫ 1

a

e−
√

x

√
x

dx. Now we can

integrate. Notice that the integrand has a structure easily simplified with the substitution
u =

√
x, and du = 1

2
√
x
dx, so that 2 du = 1√

x
dx. We can also change the limits immediately:

When x = a, u =
√
a and when x = 1, u = 1. We get:

∫ 1

0

e−
√

x

√
x

dx = lim
a→0+

∫ 1

a

e−
√

x

√
x

dx

= lim
a→0+

∫ 1

√
a

2e−u dx

= lim
a→0+

(
−2e−u) ∣∣∣1√

a

= lim
a→0+

−2e−1 + 2e−
√

a = −2e−1 + 2 = 2− 2

e
.

This is like Exercise 14, Section 7.8 but with different limits.

(b) Calculate (or show it does not exist)

∫ ∞

e

1

x(lnx)
3
2

dx.

Solution: This integral is improper since the interval of integration is of infinite length.

We correct the problem by writing

∫ ∞

e

1

x(lnx)
3
2

dx = lim
b→∞

∫ b

e

1

x(lnx)
3
2

dx. The integral

inside the limit is now a simple definite integral. The integrand again has the structure
easily simplified with a substitution; u = lnx, and du = 1

x
dx. We also change the limits

immediately: When x = e, u = ln e = 1 and when x = b, u = ln b. We get:

∫ ∞

e

1

x(lnx)
3
2

dx = lim
b→∞

∫ b

e

1

x(lnx)
3
2

dx

= lim
b→∞

∫ ln b

1

1

u
3
2

dx

= lim
b→∞

(
− 2

u
1
2

) ∣∣∣ln b

1

= lim
b→∞

− 2

(ln b)
1
2

+
2

(1)
1
2

+ = −2.

This is like Exercise 25, Section 7.8 but with an exponent of 3
2
instead of 3.
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Question 2. [20 points] Determine if the following converge or not:

(a)

{
lnn√
n

}∞

n=1

Solution: It is not a priori clear where this sequence may go, since as n goes to ∞,
both the numerator and the denominator both go to ∞. However, both “look” like
differentiable functions, so we can use a function to study this sequence. Let f(x) = ln x√

x
,

so that f(n) = lnn√
n

is our sequence. This sequence has a limit if f(x) has a horizontal

asymptote. Hence we study

lim
x→∞

f(x) = lim
x→∞

lnx√
x
.

Both the numerator and denominator (1) go to infinity, and (2) are differentiable, so by
L’Hospital’s Rule,

lim
x→∞

f(x) = lim
x→∞

lnx√
x

= lim
x→∞

d
dx

[lnx]
d
dx

[
√
x]

= lim
x→∞

1
x
1

2
√
x

= lim
x→∞

2
√
x

x
= lim

x→∞

2√
x

= 0.

Hence

{
lnn√
n

}∞

n=1

converges to 0. This problem is much like Exercises 32 and 42, Section

11.1 in notation and method for solution.

(b)

∞∑
n=0

3n2 + 6

2n4 − n3 − 2

Solution: Think of the terms of this series as an = 3n2+6
2n4−n3−2

. We would love to be able to

compare this series, term by term, directly with a series whose terms are bn = 3n2

2n4 , since

∞∑
n=1

bn =

∞∑
n=1

3n2

2n4
=

(
3

2

) ∞∑
n=1

1

n2

is a p-series with p = 2, and hence converges. However, comparing an and bn directly,
we see that the numerator of an is larger than that of bn, while the denominator of an is
smaller than that of bn. Hence an > bn, and we cannot compare use the Comparison Test
directly. Instead, we use the Limit Comparison Test: Here,

lim
n→∞

an

bn
= lim

n→∞

3n2+6
2n4−n3−2

3n2

2n4

= lim
n→∞

(
3n2 + 6

2n4 − n3 − 2
· 2n

4

3n2

)
= lim

n→∞

6n6 + 12n4

6n6 − 3n5 − 2n2

= lim
n→∞

(
6n6 + 12n4

) (
1
n6

)
(6n6 − 3n5 − 2n2)

(
1
n6

) = lim
n→∞

6 + 12
n2

6− 3
n
− 2

n4

= 1.

Since this limit exists and is not 0, we can conclude that both series either converge or

diverge. And since
∑

bn converges as a p-series with p = 2, we conclude that the original

series also converges. This problem is much like Exercise 24, Section 11.4.
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Question 3. [15 points] Use the geometric series
1

1− x
=

∞∑
n=0

xn to find a power series represen-

tation for

∫
x2

1 + 2x
dx.

Solution: First we manipulate the integrand and write it as a power series:

x2

1 + 2x
= x2

(
1

1 + 2x

)
= x2

(
1

1− (−2x)

)
.

Now we can use the form of the geometric series directly:

x2

1 + 2x
= x2

(
1

1− (−2x)

)
= x2

∞∑
n=0

(−1)n2nxn =

∞∑
n=0

(−1)n2nxn+2.

Now all that it left is to integrate the power series, which we do term by term:∫
x2

1 + 2x
dx =

∫ ( ∞∑
n=0

(−1)n2nxn+2

)
dx = C +

∞∑
n=0

(−1)n2n
xn+3

n+ 3
.

We are done. This problem is similar to Exercise 23, Section 11.9 in its notation and method

for solution.
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Question 4. [15 points] Calculate the Taylor series for h(x) = (1 + 2x)3 at x = 1.
(Hint: h(x) is a polynomial.)

Solution: First note that this is will not be an infinite binomial series since h(x) is a polyno-
mial, and we are not looking for the Maclauren series. The form for a binomial series assumes
a = 0, while here we have a = 1. It is true that, since h(x) is a polynomial, so will be its Taylor
series (and of the same degree!). We start by calculating derivatives:

h(1) = (1 + 2x)3
∣∣∣
x=1

= 27

h′(1) = 3(1 + 2x)22
∣∣∣
x=1

= 6(1 + 2x)2
∣∣∣
x=1

= 54

h′′(1) = 12(1 + 2x)2
∣∣∣
x=1

= 24(1 + 2x)
∣∣∣
x=1

= 72

h(3)(1) = 24 · 2 = 48

h(n)(1) = 0 for n ≥ 4.

Now we write the series:

h(x) =

∞∑
n=0

h(n)(1)

n!
(x− 1)n

=
h(1)

0!
(x− 1)0 +

h′(1)

1!
(x− 1) +

h′′(1)

2!
(x− 1)2 +

h(3)(1)

3!
(x− 1)3 +

h(4)(1)

4!
(x− 1)4 + . . .

= 27 + 54(x− 1) +
72

2!
(x− 1)2 +

48

3!
(x− 1)3

= 27 + 54(x− 1) + 36(x− 1)2 + 8(x− 1)3.

This problem is almost the same as Exercise 14, Section 11.10, but with a different polynomial

and value for a.
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Question 5. [20 points] Suppose the Taylor series of a function g(x) was determined to be
∞∑

n=1

2n

n
(x− 2)n.

Calculate the interval of convergence for this series (that is, find the set of all values of x where

g(x) =

∞∑
n=1

2n

n
(x− 2)n).

Solution: First we find the radius of convergence R for this series, and use the Ratio Test

for this. Here an = 2n

n
(x− 2)n and an+1 = 2n+1

n+1
(x− 2)n+1, so

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
2n+1

n+1
(x− 2)n+1

2n

n
(x− 2)n

∣∣∣∣∣ = lim
n→∞

2

(
n

n+ 1

)
|x− 2| = 2|x− 2| lim

n→∞

n

n+ 1
.

The Ratio Test concludes that the series will converge as long as this limit is less than 1.
Hence we solve the inequality

2|x− 2| lim
n→∞

n

n+ 1
= 2|x− 2| < 1,

which leads to |x− 2| < 1
2
and hence our radius of convergence is R = 1

2
. It is also possible that

the series will converge when x is chosen so that the Ratio Test limit equals 1. This happens
when

|x− 2| = 1

2
or when x =

3

2
and x =

5

2
.

We test these individually. First, let x = 5
2
. Then(

∞∑
n=1

2n

n
(x− 2)n

)∣∣∣∣∣
x= 5

2

=

∞∑
n=1

2n

n

(
5

2
− 2

)n

=

∞∑
n=1

2n

n

(
1

2

)n

=

∞∑
n=1

2n

n

1

2n
=

∞∑
n=1

1

n

which diverges since it is the Harmonic series (hence x = 5
2
is not in the interval of convergence).

For x = 3
2
, we get(

∞∑
n=1

2n

n
(x− 2)n

)∣∣∣∣∣
x= 3

2

=

∞∑
n=1

2n

n

(
3

2
− 2

)n

=

∞∑
n=1

2n

n

(
−1

2

)n

=

∞∑
n=1

2n

n

(−1)n

2n
=

∞∑
n=1

(−1)n

n

which converges as the Alternating Harmonic series (hence x = 3
2
IS included in the interval

of convergence). Hence the interval of convergence[
3

2
,
5

2

)
.

This problem is close to Exercise 18 Section 11.8.
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Question 6. [20 points] Use the Maclauren series of f(x) = xe−x to estimate the value of f(1) =
1

e
to

within .01.

Solution: First we write the Maclauren series for f(x). We get

f(x) = xe−x = x

(
∞∑

n=0

(−x)n

n!

)
= x

(
∞∑

n=0

(−1)n
xn

n!

)
=

∞∑
n=0

(−1)n
xn+1

n!
.

Note the radius of convergence here is R = ∞ (Why is this?). Hence the value of f(x) at x = 1
IS the value of the series evaluated at x = 1. We get

f(1) = xe−x
∣∣∣
x=1

=
1

e
=

∞∑
n=0

(−1)n
(1)n+1

n!
=

∞∑
n=0

(−1)n

n!
.

Not knowing what this sum is, we can estimate it, knowing that it is an alternating series
∞∑

n=0

(−1)n

n!
= 1− 1

1!
+

1

2!
− 1

3!
+

1

4!
− 1

5!
+

1

6!
− . . .

= 1− 1 +
1

2
− 1

6
+

1

24
− 1

120
+ . . . .

Recall that for an alternating series
∑

(−1)nbn, that the nth partial sum sn is closer to the
actual sum than the next term bn+1, or

|sn − s| < bn+1.

Seeing that the 5th term 1
120

< 1
100

= .01, we simply need to add the terms before this term to

get an estimate for 1
e
within .01 of the actual value. So

f(1) =
1

e
∼= 1− 1 +

1

2
− 1

6
+

1

24
=

9

24
=

3

8
= .375.

And lastly, this is not a part of this problem, but a MUCH closer approximation to 1
e
is

1

e
∼= 0.367879,

and the above estimate is off by more like .007. This problem is similar to Exercises 43 and

46, in Section 11.10 and is quite close to the example I did in class, using a power series for

ln(1 + x) to estimate ln
(
1
2

)
.
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