Solutions to Exam 1

1. Let $f(x, y)=x^{2}+y^{2}+x y-x+y$.
(a) Show that $x=1, y=-1$ is the only critical point of f.

Solution: To find the critical point, set $f_{x}=0$ and $f_{y}=0$ to obtain the equations $2 x+y-1=0,2 y+x+1=0$ which has the solution $x=1, y=-1$.
(b) Use the second derivative test to show that $x=1, y=-1$ is a local minimum (and thus an absolute minimum it is the only critical point) of f.

Solution: Since $f_{x x}=2$ and $D=f_{x x} f_{y y}-f_{x y}^{2}=2 \cdot 2-1=3>0$, the second derivative test says that f is a local minimum.
(c) Let $z=L(x, y)$ be the equation of the tangent plane of $z=f(x, y)$ at the critical point. Without evaluating any integrals, explain why the following inequality holds:

$$
\iint_{R} f(x, y) d A \geq \iint_{R} L(x, y) d A
$$

where R is any rectangle $[a, b] \times[c, d]$.
Solution: The tangent plane at $x=1, y=-1$ is parallel to the $x y$-plane (since $f_{x}=0=f_{y}$ at that point) and has the equation of the form $L(x, y)=k$ where k is a constant equal to $f(1,-1)$. Since the local minimum $x=1, y=-1$ is the only critical point of f, it is an absolute minimum and hence $f(x, y) \geq k$. This immediately implies that

$$
\iint_{R} f(x, y) d A \geq \iint_{R} k d A=\iint_{R} L(x, y) d A
$$

2. Let $g_{1}(x, y, z)=x^{2}+y^{3}+z^{4}-2$ and $g_{2}(x, y, z)=x y-y^{4}+z$.
(a) Let $h(u, v)=\left(u^{2}+1, v^{2}\right)$ and $g(x, y, z)=\left(g_{1}(x, y, z), g_{2}(x, y, z)\right)$. Use the chain rule to compute the derivative of $h \circ g$ at point $x=0, y=1, z=1$.

Solution: Let $h_{1}(u, v)=u^{2}+1$ and $h_{2}(u, v)=v^{2}$. Then

$$
D h=\left[\begin{array}{ll}
\frac{\partial h_{1}}{\partial u} & \frac{\partial h_{1}}{\partial v} \\
\frac{\partial h_{2}}{\partial u} & \frac{\partial h_{2}}{\partial v}
\end{array}\right]=\left[\begin{array}{cc}
2 u & 0 \\
0 & 2 v
\end{array}\right]
$$

Additionally,

$$
D g=\left[\begin{array}{lll}
\frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} & \frac{\partial g_{1}}{\partial z} \\
\frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y} & \frac{\partial g_{2}}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
2 x & 3 y^{2} & 4 z^{3} \\
y & x-4 y^{3} & 1
\end{array}\right]
$$

At $x=0, y=z, z=1$, we have $u=g_{1}(0,1,1)=0, v=g_{2}(0,1,1)=0$, and hence,

$$
\begin{aligned}
D(h \circ g)(0,1,1) & =D h(-2,0) D g(0,1,1) \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -4 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Let the surface S_{1} be given by $g_{1}(x, y, z)=0$ and the surface S_{2} by $g_{2}(x, y, z)=0$. Let the curve C be the intersection of S_{1} and S_{2}. Show that the point $x=0, y=1, z=1$ is not a critical point of the function $f(x, y, z)=3 x y^{2}+y^{2}+z^{4}$ restricted to C.

Solution: If $x=0, y=1, z=1$ is a critical point, then

$$
\begin{equation*}
\nabla f(0,1,1)=\lambda_{1} \nabla g_{1}(0,1,1)+\lambda_{2} \nabla g_{2}(0,1,1) \tag{*}
\end{equation*}
$$

for some scalars λ_{1}, λ_{2}. This leads the following system of equations:

$$
\begin{aligned}
& 3=\lambda_{2} \\
& 2=3 \lambda_{1}-4 \lambda_{2} \\
& 4=4 \lambda_{1}+\lambda_{2}
\end{aligned}
$$

The first two equations imply $\lambda_{1}=14 / 3$ and $\lambda_{2}=3$. But plugging this into the third equation gives $4=4(14 / 3)+3=65 / 3$, a contradiction.
(c) Give an example of a function $f(x, y, z)$ which, when restricted to C, has a critical point at $x=0, y=1, z=1$.

Solution: We need a function satisfying equation $\left(^{*}\right)$ above for some scalars λ_{1} and λ_{1}. For example, if we set $\lambda_{1}=\lambda_{2}=1,\left(^{*}\right)$ gives

$$
\nabla f(0,1,1)=(0,3,4)+(1,-4,1)=(1,-1,5)
$$

Thus $f(x, y, z)=x-y+5 z$ will do. (Note: There are many possible answers.)
3. Let $f(x, y, z)=y z+x z-6$.
(a) At the point $x=1, y=1, z=1$, find the unit vector that points in the direction for which f is increasing at the fastest rate.

Solution: The function f increases at the fastest rate in the direction of

$$
\frac{\nabla f(1,1,1)}{|\nabla f(1,1,1)|}=\frac{(1,1,2)}{\sqrt{6}}
$$

(b) For $\mathbf{x}=(1,1,1)$, find a vector \mathbf{v} for which $\frac{d}{d t} f(\mathbf{x}+t \mathbf{v})=17$ at $t=0$. (There are many possible answers. Just find one.)

Solution: If we let $\mathbf{v}=(a, b, c)$, then

$$
17=\frac{d}{d t}\left(\left.f(\mathbf{x}+t \mathbf{v})\right|_{t=0}=\nabla f(1,1,1) \cdot \mathbf{v}=(1,1,2) \cdot(a, b, c)=a+b+2 c\right.
$$

Thus, one possible answer is $\mathbf{v}=(17,0,0)$.
(c) Suppose $\mathbf{c}(t)$ is a flow line of ∇f with $\mathbf{c}(0)=(1,1,1)$. Calculate the acceleration of the curve $\mathbf{c}(t)$ at $t=0$.

Solution: Since $\nabla f=(z, z, x+y)$, if we set $\mathbf{c}(t)=(x(t), y(t), z(t))$, then $\mathbf{c}^{\prime}(t)=\nabla f(\mathbf{c}(t))$ implies

$$
\begin{array}{rlc}
x^{\prime}(t) & = & z(t) \\
y^{\prime}(t) & = & z(t) \\
z^{\prime}(t) & = & x(t)+y(t)
\end{array}
$$

Thus,

$$
\begin{array}{rllll}
x^{\prime \prime}(t) & = & z^{\prime}(t) & = & x(t)+y(t) \\
y^{\prime \prime}(t) & = & z^{\prime}(t) & & =x(t)+y(t) \\
z^{\prime \prime}(t) & = & x^{\prime}(t)+y^{\prime}(t) & = & 2 z(t)
\end{array}
$$

and

$$
\begin{aligned}
& x^{\prime \prime}(0)=x(0)+y(0) \\
& y^{\prime \prime}(t)=x(0)+y(0) \\
&=2 \\
& z^{\prime \prime}(t)=2 z(0)
\end{aligned}
$$

4. For each of the four questions below, state whether the assertion is true or false. If it is true, justify and if it is false, give a counterexample.
(a) If \mathbf{a} and \mathbf{b} are vectors, the $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{b}.

Solution: This is true. The vector triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}$ where $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is given by the determinant

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

which is equal to zero since the last two rows coincide. Two vectors whose dot product is 0 are perpendicular.
(b) If \mathbf{F} is a vector field, then $\nabla \times \mathbf{F}$ is perpendicular to \mathbf{F}.

Solution: This is flse. If $\mathbf{F}(x, y, z)=x \mathbf{i}+z \mathbf{j}+z \mathbf{k}$, then $\nabla \times \mathbf{F}=-\mathbf{i}$. On the other hand, $(\nabla \times \mathbf{F}) \cdot \mathbf{F}=-x$.
(c) If \mathbf{F}, \mathbf{G} and \mathbf{H} are vector fields so that \mathbf{F} is a gradient field and \mathbf{G} is a curl of some vector field, then $(\operatorname{div} \mathbf{G}) \mathbf{H}=\operatorname{curl} \mathbf{F}$.

Solution: This is true. Since \mathbf{G} is a curl of some vector field div $\mathbf{G}=0$. Since \mathbf{F} is a gradient field, curl $\mathbf{F}=\overrightarrow{0}$. So both the left hand side and the right hand side is equal to the zero vector.
(d) Assume $\nabla f(x, y, z) \neq \overrightarrow{0}$ for all (x, y, z). If $\mathbf{c}(t)$ is a flow line of ∇f, then the function $f(\mathbf{c}(t))$ is an increasing function of t.

Solution: This is true. Using the chain rule and the fact that $\mathbf{c}^{\prime}(t)=\nabla f(\mathbf{c}(t))$, we have

$$
\frac{d}{d t} f(\mathbf{c}(t))=\nabla f(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t)=\mathbf{c}^{\prime}(t) \cdot \mathbf{c}^{\prime}(t)=\left|\mathbf{c}^{\prime}(t)\right|^{2}>0
$$

and hence $f(\mathbf{c}(t))$ is an increasing function.

