On the Singular Set of Harmonic Maps into DM-Complexes

Georgios Daskalopoulos1
Brown University
daskal@math.brown.edu

Chikako Mese2
Johns Hopkins University
cmese@math.jhu.edu

Abstract

We prove that the singular set of a harmonic map from a smooth Riemannian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. We also explore monotonicity formulas and an order gap theorem for approximately harmonic maps. These regularity results have applications to rigidity problems examined in subsequent articles.

1 Introduction

Harmonic map theory from Riemannian domains to singular spaces originate with the work of Gromov-Schoen [GS] and was subsequently extended in [KS1], [KS2] and also [Jo]. The motivating question comes from rigidity theory. More precisely, one would like to know that a harmonic map, under appropriate curvature assumptions on the domain and the target spaces, is totally geodesic or even constant. This is the famous Bochner method which has been extensively used in the case when the target space is a smooth manifold. Recall that the Bochner formula is a differential equation involving higher derivatives of the map and relies on the smooth structure of the Riemannian manifolds involved. Therefore, in order to utilize it in the singular setting, the key is to show that harmonic maps into singular spaces are regular enough on a big open set.

1supported by research grant from the Simons Foundation
2supported by the National Science Foundation under Grant No. 1105599
In the seminal work of Gromov and Schoen [GS], it is shown that this is in fact the case when the target space is an F-connected simplicial complex. Roughly speaking, a k-dimensional F-connected complex is an NPC (non-positively curved) Euclidean k-complex where any two adjacent cells lie on a maximal flat, i.e. an image of the Euclidean space \mathbb{R}^k embedded isometrically and totally geodesically in the complex. Examples of F-connected complexes are Euclidean buildings. The main technical result of [GS] is to show that a harmonic map u from a smooth Riemannian domain Ω to a k-dimensional F-connected complex Y locally maps into a Euclidean space outside a set of codimension at least 2, or in other words, that the singular set $S(u)$ of u is at least of Hausdorff codimension 2. To investigate the singular points, they show the existence of the order function (sometimes also called the frequency function) associated with a harmonic map. For example, for a harmonic function $u : \Omega \to \mathbb{R}$, the value of the order function $\text{Ord}^u(x)$ is the order with which u attains its value $u(x)$ at x. Alternatively, it is the degree of the dominant homogeneous harmonic polynomial which approximates $u - u(x)$ near x.

The question of superrigidity has played an important role in Geometric Group Theory, and it is beyond the scope of this introduction to summarize all the results of the vast literature. The goal of this paper is to lay the foundational analytic work needed in order to study superrigidity questions beyond the work of Gromov-Schoen, in other words, for a class of spaces larger than Euclidean buildings. For this purpose we introduce the notion of Differentiable Manifold complex (or simply DM-complex). A DM-complex is a cell complex Y with branching-DM structure in the sense that any two adjacent cells lie in a DM, the image of a Differentiable Manifold isometrically embedded in Y. Such complexes are assumed to be NPC but they can have arbitrary Riemannian metrics on their DM’s. Special cases of such complexes are Euclidean and hyperbolic buildings. However, most of the work presented in this paper generalizes to an even larger class of spaces called Differentiable Manifold spaces, which roughly speaking are metric spaces which have a differentiable manifold structure on a big open set. An example of a DM-space other than DM-complexes is the Weil-Petersson completion of Teichmüller space near a boundary stratum, which is related to important superrigidity questions of the Mapping Class Group. This space will be explored in a sequel paper.

We now summarize the main results of this paper. Our first main theorem
can be stated as follows:

Theorem 1 If \(u : \Omega \to Y \) is a harmonic map from an \(n \)-dimensional Riemannian domain to a \(k \)-dimensional NPC DM-complex, then the singular set \(S(u) \) of \(u \) has Hausdorff co-dimension at least 2 in \(\Omega \); i.e.

\[
\dim_H(S(u)) \leq n - 2.
\]

We also prove

Theorem 2 Let \(u : \Omega \to Y \) be as in Theorem 1. For any compact subdomain \(\Omega_1 \) of \(\Omega \), there exists a sequence of smooth functions \(\{ \psi_i \} \) with \(\psi_i \equiv 0 \) in a neighborhood of \(S(u) \cap \Omega_1 \), \(0 \leq \psi_i \leq 1 \) and \(\psi_i(x) \to 1 \) for all \(x \in \Omega_1 \setminus S(u) \) such that

\[
\lim_{i \to \infty} \int_{\Omega} |\nabla \nabla u| |\nabla \psi_i| \, d\mu = 0.
\]

A harmonic map \(u : \Omega \to Y \) into a \(k \)-dimensional DM-complex can be written locally near a singular point \(x_0 \in S(u) \) as \(u = (V, v) \) where \(V \) is the non-singular component map that maps into a Euclidean space \(\mathbb{R}^j \) and \(v \) is the singular component map that maps into a lower dimensional complex \(Y^{k-j}_2 \). We partition \(S(u) \) as \(\bigcup S_j(u) \) where \(j \) indicates the dimension of the target space \(\mathbb{R}^j \) of \(V \) (see Definitions 12 and 14). When the target space \(Y \) is an F-connected complex, \(u \) maps into the product of \(\mathbb{R}^j \) and \(Y^{k-j}_2 \), and both components \(V \) and \(v \) are harmonic maps. Therefore, the analysis of the singular set of \(u \) can be inductively reduced to the study of the singular set of \(v \) which maps into a lower dimensional complex. This is in fact how it is argued in [GS]. In the case when the target space is a general DM-complex, \(u \) locally maps into the twisted product of \(\mathbb{R}^j \) and \(Y^{k-j}_2 \) which we denote by \((\mathbb{R}^j \times Y^{k-j}_2, d_G) \). The maps \(V \) and \(v \) are thus only *approximately* harmonic. More significantly, the map \(v \) is the non-dominant term of \(u = (V, v) \). This presents the major technical difficulty of the paper. In analyzing the singular set of \(v \), we prove a general monotonicity formula to deduce the existence of the order function and the order gap theorem for the approximate case. Here, we summarize our results:
Theorem 3 (The Order of the Singular Component) If \(u : \Omega \to Y \) is a harmonic map from an \(n \)-dimensional Riemannian domain to a \(k \)-dimensional NPC DM-complex, \(j \in \{0, \ldots, \min\{n, k\}\} \), \(x_0 \in S_j(u) \) and \(u = (V, v) \) as above near \(x_0 \), then

\[
\text{Ord}_v(x_0) := \lim_{\sigma \to 0} \frac{\sigma E^v_{x_0}(\sigma)}{I^v_{x_0}(\sigma)}
\]

exists. (See (1) for the notation.)

As with the case when \(v \) is harmonic, the main ingredient in proving the existence of the order function is a monotonicity formula. For this, the major steps are proving a target variation formula and a domain variation formula. This is achieved in sections 6 and 8 respectively. In fact, it follows from earlier work (cf. [Me] and [DM1]) that all necessary monotonicity can be deduced as a formal consequence of the domain and target variation formulas combined with a Poincare type inequality proved in Section 7. The existence of the order function implies

Theorem 4 (The Gap Theorem) Under the same assumptions as Theorem 3, there exists \(\epsilon_0 > 0 \) such that \(\text{Ord}_v(x) \geq 1 + \epsilon_0 \) for all \(x \in S_j(u) \) near \(x_0 \).

In the follow-up article [DMV], we show how to employ the results of this paper in order to prove superrigidity for representations of lattices into new classes of groups not covered by [GS], for example isometry groups of hyperbolic buildings. In subsequent articles, we will apply our results to study rigidity questions of Teichmüller space and the mapping class group. This is the reason why, as the reader may notice, our notation is a little more cumbersome than needed for proving the main results of the paper. For example, we state our main assumptions in Section 5 and deduce everything from there. These assumptions hold for the more general class of DM-spaces (like Teichmüller space, for example) from which we can deduce properties like monotonicity and order almost immediately.

Acknowledgement. The authors would like to thank Fang-Hua Lin and Bill Minicozzi for useful discussions.
2 Harmonic maps into NPC spaces and DM-complexes

Let Ω be a smooth bounded n-dimensional Riemannian domain and (Y,d) a metric space. First recall that by the work of Gromov-Schoen and Korevaar-Schoen (cf. [GS] and [KS1]) one can define the Sobolev space of $W^{1,2}$ or finite energy maps $W^{1,2}(\Omega,Y) \subset L^2(\Omega,Y)$. In particular if $f \in W^{1,2}(\Omega,Y)$ one can define the energy density $|\nabla f|^2 \in L^1(\Omega)$ and the total energy

$$E_f = \int_{\Omega} |\nabla f|^2 d\mu$$

of f. Furthermore, it is shown in the references above that if $f \in W^{1,2}(\Omega,Y)$, then there exists a well-defined notion of a trace of f, denoted $Tr(f)$, which is an element of $L^2(\partial\Omega,Y)$. Two maps $f, g \in W^{1,2}(\Omega,Y)$ have the same trace (i.e. $Tr(f) = Tr(g)$) if and only if $d(f,g) \in W^{1,2}_0(\Omega)$. Given $x \in \Omega$ and f as above, we will use the following notation

$$E^f_x(\sigma) := \int_{B_\sigma(x)} |\nabla f|^2 d\mu \quad \text{and} \quad I^f_x(\sigma) := \int_{\partial B_\sigma(x)} d^2(f,f(x))d\Sigma. \quad (1)$$

Definition 5 A $W^{1,2}$-map $u : \Omega \to Y$ to an NPC space Y is said to be harmonic or energy minimizer if, for any geodesic ball $B_r(x) \subset \Omega$, the restriction $f|_{B_r(x)}$ is energy minimizing among all $W^{1,2}$-maps with the same trace.

Let $u : \Omega \to Y$ be a harmonic map. By Section 1.2 of [GS], there exists a constant $c > 0$ depending only on the metric on Ω (in particular $c = 0$ when Ω is Euclidean) such that

$$\sigma \mapsto Ord^u(x,\sigma) := e^{c\sigma^2} \frac{E^u_x(\sigma)}{I^u_x(\sigma)}$$

is non-decreasing for any $x \in \Omega$. As a non-increasing limit of continuous functions,

$$Ord^u(x) := \lim_{\sigma \to 0} Ord^u(x,\sigma)$$

is an upper semicontinuous function. By following the proof of Theorem 2.3 in [GS], we see that $Ord^u(x) \geq 1$. The value $Ord^u(x)$ is called the order of u at x.
Fix $x_0 \in \Omega$ and choose a normal coordinate system centered at $x_0 = 0$. Set $\alpha := \text{Ord}^u(0)$. By Section 1.3 of [GS], there exists a constant $c > 0$ and $\sigma_0 > 0$ such that
\[
\sigma \mapsto e^{c\sigma^2} \frac{I_0^u(\sigma)}{\sigma^{n-1+2\alpha}}
\]
is monotone non-decreasing for $\sigma \in (0, \sigma_0)$. Thus,
\[
\lim_{\sigma \to 0} \mu_\sigma = 0 \quad (2)
\]
where
\[
\mu_\sigma := \sqrt{\frac{I_0^u(\sigma)}{\sigma^{n-1}}} \quad (3)
\]
Set $g_\sigma(x) = g(\sigma x)$ and define
\[
u_\sigma : (B_1(0), g_\sigma) \to (Y, \mu_\sigma^{-1}d), \quad u_\sigma(x) = u(\sigma x).
\]
By following Section 3 of [GS], we see that u_σ is a harmonic map with $E_0^{u_\sigma}(1) \leq 2\alpha$ and $I_0^{u_\sigma}(1) = 1$. Let $\delta = g(0)$ be the Euclidean metric defined by the value of g at 0. By Theorem 2.4.6 of [KS1], u_σ has a uniform modulus of continuity on compact sets independent of σ (with respect to the metric $g(0)$ on the domain which is uniformly equivalent to g_σ for σ small). By [KS2], Proposition 3.7 and a diagonalization argument, there exists $\sigma_i \to 0$ and a map $u_* : \mathbb{R}^n \to Y_*$ into an NPC space such that u_{σ_i} converges to u_* uniformly in the pull-back sense on every compact set. By a slight modification of) the L^2 trace theorem of [KS1], Theorem 1.12.2 and the fact that $I_0^{u_\sigma}(1) = 1$, we have that u_σ is non-constant. Furthermore, by [KS2] Proposition 3.11 the energy of u_{σ_i} converges to u_* on compact subsets of $B_1(0)$. We claim that
\[
u_* \text{ is an energy minimizer on } B_1(0). \quad (4)
\]
Indeed, if $w : (B_1(0), g(0)) \to Y_*$ is an energy minimizing map with $w|_{\partial B_1(0)} = u_*|_{\partial B_1(0)}$, then Lemma 2.4.2 [KS1] implies that $d^2(u_*, w)$ is weakly subharmonic with zero boundary condition and hence $u_* = w$ on $B_1(0)$. Finally u_* is homogeneous degree α, i.e.
\[
d(u_*(tx), u_*(0)) = t^\alpha d(u_*(x), u(0)) \text{ for } 0 \leq t \leq 1, \ x \in \mathbb{R}^n
\]
by the same argument as in [GS] Proposition 3.3. Variations of the above argument will be used throughout the paper.

We now specialize to the case when Y is in a special class of cell complexes.
Definition 6 Let E^d be an affine space. A convex piecewise linear polyhedron S with interior in some $E^i \subset E^d$ is called a cell. We will use the notation S^i to denote a cell S of dimension i. A convex cell complex or simply a complex Y in E^d is a finite collection $\mathcal{F} = \{S\}$ of cells satisfying the following properties: (i) the boundary ∂S^i of $S^i \in \mathcal{F}$ is a union of $T^j \in \mathcal{F}$ with $j < i$ (called the faces of S^i) and (ii) if $T^j, S^i \in \mathcal{F}$ with $j < i$ and $S^i \cap T^j \neq \emptyset$, then $T^j \subset S^i$.

For example, a simplicial complex is a cell complex whose cells are all simplices.

Definition 7 A complex Y of dimension k is said to have a branching Differentiable Manifold structure if given any two cells S_1 and S_2 of Y such that $S_1 \cap S_2 \neq \emptyset$, there exists a k-dimensional C^∞-differentiable manifold M and embedding $J : M \to Y$ such that $S_1 \cup S_2 \subset J(M)$. By an abuse of notation, we will often denote $J(M)$ by M and call it a DM (short for Differentiable Manifold).

Definition 8 Let Y be a complex with a branching Differentiable Manifold structure and d_G is a distance function on Y. The pair (Y, d_G) is called a Riemannian complex for every DM M of Y, there exists a smooth Riemannian metric G satisfying the following properties:

(i) If a cell S is contained in two DM’s M_1 and M_2, the restriction to S of Riemannian metric G_1 defined on M_1 and G_2 defined on M_2 agree.

(ii) The Riemannian metric G^S defined (defined via the restriction as in (i)) on S is such that the component functions of G^S extend smoothly all the way to the boundary of S.

(iii) If S' is a face of S then the restriction G^S to S' is equal to $G^{S'}$.

(iv) The distance function d_G is induced induced by the metrics G_S.

Such complexes will be referred as DM-complexes.

Throughout this paper, all cell complexes will have the additional property that all cells are bounded unless otherwise specified. If this is not the case, then we will write unbounded cell complex. Additionally, all cell complexes Y will be locally compact, Riemannian and NPC with respect to the distance function d induced from G^S.

Remark 9 If any DM of a DM-complex is isometric to a k-dimensional Euclidean space, then the DM-complex is F-connected in the sense of [GS] Section 6.1. The NPC assumption implies that if M_1 and M_2 are DM’s of a Riemannian DM-complex, then $M_1 \cap M_2$ is totally geodesic in M_1 and M_2.

Recall that for an arbitrary NPC space Y and a point $P \in Y$, the Alexandrov tangent cone $T_P Y$ of Y at P is the cone over the space of directions Π. Here, Π is the completion of the space of equivalence classes of geodesics emanating from P (where the equivalence relation \sim is given by $\gamma_1 \sim \gamma_2 \iff$ the angle between γ_1, γ_2 at P is zero) along with the distance function defined by the angle at P. For a DM-complex Y, let C denote the tangent cone of Y at the point P as defined in [Fe] 3.1.21. Clearly, C is an unbounded cell complex and

$$T_P Y \text{ is isometric to } (C, G(P))$$

(5)

where $G(P)$ is the metric defined by the value of G at P. Notice that if $P, Q \in \text{int}(S)$, then C for P and Q are isomorphic as sets. Let M_P be the set of all DM’s passing through P. For each $M \in M_P$, define $F_M = T_PM \subset C$. An immediate consequence is the following:

Lemma 10 If M is a DM in (Y, d_G), then F_M is a flat in $(C, G(P)) = T_P Y$. In particular, if Y is a DM-complex, then $T_P Y$ is F-connected in the sense of [GS].

We can define the exponential map

$$\exp^Y_P : T_P Y \to \bigcup_{M \in M_P} M \subset Y$$

(6)

by piecing together the exponential maps defined on each $M \in M_P$. This is equivalent to the exponential map defined from Alexandrov tangent cone point of view, i.e. given a unit speed geodesic γ and $t \in [0, \infty)$, $\exp^Y_P(\gamma, t) = \gamma(t)$.

Let $u : \Omega \to Y$ be a harmonic map into an NPC DM-complex and $x_0 \in \Omega$. By choosing normal coordinates, we can identify a neighborhood of $x_0 \in \Omega$ with a neighborhood of $0 \in \mathbb{R}^n$. Let C be the tangent cone of Y at $u(x_0)$. By a slight abuse of notation, we shall denote by

G and d_G respectively

(7)
the pullback metric $\exp_{u(x_0)}^* G$ defined on C and the distance function induced by this pullback. Since we are only interested in the local behavior of u, we shall identify Y with (C, d_G). Let u_* be a tangent map of u at x_0. Recall that by definition, u_* is the limit (in the pullback sense as in [KS2] Section 3) of the maps

$$u_{\sigma_i} : B_1(0) \to (C, \mu_{\sigma_i}^{-1} d_G), \quad u_{\sigma_i}(x) = u(\sigma_i x). \quad (8)$$

The induced pullback pseudodistances on $B_1(0)$ are the same as that of the maps

$$\mu_{\sigma_i}^{-1} u_{\sigma_i} : B_1(0) \to (C, G_{\sigma_i}), \quad G_{\sigma_i}(y) = G(\mu_{\sigma_i} y). \quad (9)$$

The smoothness of the metric G implies that G_{σ_i} converges uniformly to the metric $G(u(0))$. Again, since $\mu_{\sigma_i}^{-1} u_{\sigma_i}$ have uniformly bounded energy $E_{\mu_{\sigma_i}^{-1} u_{\sigma_i}}(1)$ and uniformly bounded $I_{\mu_{\sigma_i}^{-1} u_{\sigma_i}}(1)$, we obtain by [GS] Theorem 2.4 and Arzela-Ascoli that $\mu_{\sigma_i}^{-1} u_{\sigma_i}$ converges locally uniformly to a limit map $u_0 : (B_1(0), g(0)) \to (C, G(u(0)))$. By the equivalence of (8) and (9), u_0 must be equal to the tangent map u_*. We have thus shown

Lemma 11 Let $u : \Omega \to Y$ be a harmonic map into an NPC DM-complex. A tangent map of u at $x_0 \in \Omega$ is a homogeneous harmonic map into the NPC space $(C, d_G(u(x_0))) = T_{u(x_0)} Y$.

3 Regular and Singular points

As in the previous section, let Ω be an n-dimensional Riemannian domain and (Y, d_G) a k-dimensional NPC DM-complex.

Definition 12 For a map $f : \Omega \to Y$, let $\mathcal{R}(f)$ be the set of all points $x_0 \in \Omega$ such that for $\sigma_0 > 0$ sufficiently small

$$f(B_{\sigma_0}(x_0)) \subset \exp_{f(x_0)}^Y(X_0) \quad (10)$$

where $X_0 \subset T_{u(x_0)} Y$ is isometric to \mathbb{R}^k. In particular, f maps a neighborhood of x_0 into a DM. If $u : \Omega \to Y$ is a harmonic map, a point $x_0 \in \Omega$ is called a regular point if $x_0 \in \mathcal{R}(u)$ and $\text{Ord}^u(x_0) = 1$. A point $x_0 \in \Omega$ is called a singular point if it is not a regular point. Denote the set of regular points by $\mathcal{R}(u)$ and the set of singular points by $\mathcal{S}(u)$.

9
Remark 13 The definition of a regular point in [GS] is slightly different than ours. Specifically, a regular point in [GS] may have order > 1 whereas ours does not.

Definition 14 Let $u : \Omega \to Y$ be a harmonic map,

$$S_0(u) = \{x_0 \in \Omega : \text{Ord}^u(x_0) > 1\},$$

$$k_0 := \min\{n, k\} \text{ and } S_j(u) = \emptyset \text{ for } j \notin \{0, 1, \ldots, k_0\}.$$ For $j = 1, \ldots, k_0$, we define $S_j(u)$ inductively as follows. Having defined $S_m(u)$ for $m = j + 1, \ldots, k_0 + 1$, define $S_j(u)$ to be the set of points

$$x_0 \in S(u) \setminus \left(\bigcup_{m=j+1}^{k_0} S_m(u) \cup S_0(u) \right)$$

with the property that there exists $\sigma_0 > 0$ such that

$$u(B_{\sigma_0}(x_0)) \subset \exp^v u(x_0)(X_0)$$

(11)

where

$$X_0 \subset T_{u(x_0)} Y \text{ is isometric to } \mathbb{R}^j \times Y_2^{k-j}$$

(12)

with Y_2^{k-j} a $(k - j)$-dimensional unbounded conical F-connected complex with vertex P_0. Set

$$S_m(u) = \bigcup_{j=0}^{m} S_j(u) \text{ and } S_m^+(u) = \bigcup_{j=m}^{k} S_j(u).$$

Lemma 15 The sets $S_0(u), S_1(u), \ldots, S_{k_0-1}(u), S_{k_0}(u)$ form a partition of $S(u)$.

Proof. By definition, $S_0(u), \ldots, S_{k_0}(u)$ are mutually disjoint sets. Let $x_0 \in S(u)$. If $\text{Ord}^u(x_0) > 1$, then $x_0 \in S_0(u)$. If $\text{Ord}^u(x_0) = 1$, then the tangent map $u_* : \mathbb{R}^n \to T_{u(x_0)} Y$ at x_0 is a homogeneous degree 1 map and maps onto a flat $F_0 \subset T_{u(x_0)} Y$ by Proposition 3.1 of [GS]. Let X_0 be the union of all k-flats containing F_0. By Lemma 6.2 of [GS], X_0 is isometric to $\mathbb{R}^j \times Y_2^{k-j}$ where $j \in \{1, \ldots, k_0\}$ is the dimension of F_0. We can deduce from the proof of Lemma 6.2 of [GS] that Y_2^{k-j} is a cone. Furthermore, by the same lemma, u_* is effectively contained in X_0. Since
Conversely, every containing the j
is open which in turn this implies
where X
is closed.

Lemma 16 The sets \(R(u) \), \(R(u) \cup S_m^+(u) \) are open and the sets \(S_m^-(u) \) are closed.

Proof. Clearly \(R(u) \) and \(R(u) \cup S_m^+(u) = \Omega \) are open. Now assume \(m > 0 \) and \(x_0 \in S_m^+(u) \). Thus, \(x_0 \in S_j(u) \) for an integer \(j \geq m \), hence \(\text{Ord}^u(x_0) = 1 \) and there exists \(\sigma_0 > 0 \) such that \(u(B_{\sigma_0}(x_0)) \subset \exp_{u(x_0)}^Y(X_0) \) where \(X_0 \) is isometric to \(\mathbb{R}^j \times Y_2^{k-j} \). Thus, \(x \in B_{\sigma_0}(x_0) \) implies \(x \in S^l(u) \cup R(u) \) for some \(l \in \{j, \ldots, k_0\} \), i.e. \(x \in S_m^+(u) \cup R(u) \). This shows \(S_m^+(u) \cup R(u) \) is open which in turn this implies \(S_m^-(u) = \Omega \setminus (S_{m+1}^+(u) \cup R(u)) \) is closed. Q.E.D.

Let \(u : \Omega \to (Y, d_G) \) be a harmonic map and \(x_* \in S_j(u) \) for \(j > 0 \). Thus, we can assume there exists \(\sigma_* > 0 \) such that
\[
u(B_{\sigma_*}(x_*)) \subset \exp_{u(x_*)}^Y(\mathbb{R}^j \times Y_2^{k-j})
\]
after isometrically identifying \(\mathbb{R}^j \times Y_2^{k-j} \) with \(X_0 \) (cf. (11) and (12)). As seen by the proof of Lemma 15, \(\mathbb{R}^j \times Y_2^{k-j} \) is the union of all \(k \)-flats \(\{F_i\}_{i=1}^L \) containing the \(j \)-flat \(\mathbb{R}^j \times \{P_0\} \), and we can write
\[
\mathbb{R}^j \times Y_2^{k-j} = \bigcup_{i=1}^L F_i.
\]
(13)

Conversely, every \(k \)-flat of \(\mathbb{R}^j \times Y_2^{k-j} \) is one of \(\{F_i\}_{i=1}^L \). To see this, note that if \(F \) is a \(k \)-flat in \(\mathbb{R}^j \times Y_2^{k-j} \) then \(\pi_1(F) \) and \(\pi_2(F) \) are flats in \(\mathbb{R}^j \) and \(Y_2^{k-j} \) respectively where \(\pi_1 \) and \(\pi_2 \) are the projections onto the two factors \(\mathbb{R}^j \) and \(Y_2^{k-j} \). Since \(\dim(\pi_1(F)) + \dim(\pi_2(F)) = \dim(F) = k \), we necessarily have \(\dim(\pi_1(F)) = j \) and \(\dim(\pi_2(F)) = k - j \). Thus, \(\pi_1(F) = \mathbb{R}^j \), and since \(\mathbb{R}^j \times Y_2^{k-j} \) is a cone, \(\pi_2(F) \) must contain the point \(P_0 \). This implies that \(F \) contains the \(j \)-flat \(\mathbb{R}^j \times \{P_0\} \).

We consider metrics
\[
G(u(x_*)), G \text{ on } \mathbb{R}^j \times Y_2^{k-j} \text{ and } h \text{ on } Y_2^{k-j}
\]
(14)
as follows. The flat metric $G(u(x_*))$ is as in (5) with $P = u(x_*)$. Notice that $G(u(x_*))$ is a product metric on $\mathbb{R}^j \times Y_2^{k-j}$ by [GS] Lemma 6.2. The metric h is defined by restricting $G(u(x_*))$ to Y_2^{k-j}. In particular, (Y_2^{k-j}, d_h) is a $(k-j)$-dimensional F-connected NPC complex. The metric G is the pullback metric via the exponentail map (6) as in (7). Note that then $(F_i, G|_{F_i})$ is a k-dimensional differentiable manifold for any F_i as in (13). Conversely, if $(M, G|_M)$ is a k-dimensional differentiable manifold containing $u(x_*)$, then $(M, G(u(x_*)))$ is isometric to \mathbb{R}^k, and hence $M = F_i$. In other words, $(\mathbb{R}^j \times Y_2^{k-j}, d_G)$ is a DM-complex where $\{ (F_i, G|_{F_i}) \}$ is the set DM's of $(\mathbb{R}^j \times Y_2^{k-j}, d_G)$. We identify F_i with \mathbb{R}^k such that $P_0 = (0, \ldots, 0) \in \mathbb{R}^{k-j}$.

We will say that

$$(\mathbb{R}^j \times Y_2^{k-j}, d_G)$$

is a local model. \hspace{1cm} (15)

We are interested in the local properties of a harmonic map $u : \Omega \to Y$. Thus for $x_* \in \Omega$ and $\sigma_* > 0$ sufficiently small, we represent $u|_{B_{\sigma_*(x_*)}}$ as a harmonic map

$$u = (V, v) : (B_{\sigma_*(x_*)}, g) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G).$$

into a local model and refer to (16) as a local representation. Here, we assume that if we have the representation in the above form and $x_* \in S(u) \setminus S_0(u)$, then $x \in S_j(u)$ (cf. Definition 14). Furthermore, if $x_* \in \mathcal{R}(u)$ then we assume $k = j$. The projection maps

$$V := \pi_1 \circ u : B_{\sigma_*(x_*)} \to \mathbb{R}^j$$

and $v := \pi_2 \circ u : B_{\sigma_*(x_*)} \to Y_2^{k-j}$

are called the the non-singular component and the singular component respectively. We will also need the following refined notion of regular.

Definition 17 Let u as above, $x_0 \in B_{\sigma_*(x_*)}$, $\sigma_0 > 0$ such that $B_{\sigma_0}(x_0) \subset B_{\sigma_*(x_*)}$ and $w : (B_{\sigma_0}(x_0), g) \to (Y_2^{k-j}, d_h)$ be a harmonic map. A point $x \in \mathcal{R}(u)$ is said to be (u, w)-regular if there exists a flat F of Y_2^{k-j} and $r > 0$ such that $v(B_r(x)), w(B_r(x)) \subset F$. Denote by $\mathcal{R}(u, w)$ the set of all (u, w)-regular points.

Lemma 18 Let u and w as in Definition 17. For $x_0 \in \mathcal{R}(u) \cap \mathcal{R}(w)$, there exist $r > 0$ and a set Λ of finite $(n-1)$-Hausdorff measure such that $x \in \mathcal{R}(u, w)$ for any $x \in B_r(x_0) \setminus \Lambda$.

12
Proof. Let F denote the set of all $(k-j)$-flats of Y_{2}^{k-j}. Since $x_0 \in \mathcal{R}(u) \cap \mathcal{R}(w)$, there exist $r > 0$ and $F^u, F^w \in F$ such that $v(B_r(x_0)) \subset F^u$ and $w(B_r(x_0)) \subset F^w$. For $F \in F\setminus \{F^u\}$, there exists a finite set L_f^v of $(k-1)$-dimensional linear subspaces of F^u such that

$$\partial(F^v \cap F) \subset \bigcup_{L \in L_f^v} L.$$

Intuitively speaking L_f^v is the set where flats can branch off F. Similarly define L_f^w. We claim that for every $L \in L_f^v$, either (i) $v^{-1}(L) \cap B_r(x_0)$ is a real analytic subvariety of $B_r(x_0)$ of codimension at least 1 or (ii) $v(B_r(x_0)) \subset L$. We also claim an analogous statement for $L \in L_f^w$ and $w^{-1}(L) \cap B_r(x_0)$. Since the proofs are similar, we only prove the first statement. First, isometrically identify F^v to \mathbb{R}^{k-j} in such a way that if (y_j+1, \ldots, y_k) are the standard coordinates of \mathbb{R}^{k-j} then L is given by $\{(y_j+1, \ldots, y_k) : y_k = 0\}$. Let (V, \ldots, u_k) be the coordinate expression of $u|_{B_r(x_0)} : B_r(x_0) \to \mathbb{R}^k \simeq \mathbb{R}^j \times F^v$. Since u satisfies the harmonic map equation, the unique continuation principle of elliptic p.d.e.’s implies that either $(u_k)^{-1}(0)$ is a subvariety of codimension at least 1 or $u^k \equiv 0$. This proves the claim. Let L_f^v be the elements of L_f^v satisfying (i). Similarly define L_f^w. Then

$$\Lambda = \left(\bigcup_{F \in F \setminus \{F^u\}} \bigcup_{L \in L_f^v} v^{-1}(L) \cup \bigcup_{F \in F \setminus \{F^u\}} \bigcup_{L \in L_f^w} w^{-1}(L) \right) \cap B_r(x_0)$$

is clearly of finite $(n-1)$-Hausdorff measure. By construction, given any connected component C of $B_r(x_0) \setminus \Lambda$ and any $F \in F \setminus F^u$ either $v(C) \cap F = \emptyset$ or $v(C) \subset F$. Hence (after assuming without loss of generality that the triangulation of Y_{2}^{k-j} has minimal number of cells), $v(C)$ is contained in a single closed k-cell, say S^v. Similarly, $w(C)$ is contained in a single (possibly the same) closed k-cell, say S^w. Since Y_{2}^{k-j} is F-connected and all cells are adjacent (containing P_0), there exists $F \in F$ containing S^v and S^w. This shows $C \subset \mathcal{R}(u, w)$. Q.E.D.

Corollary 19 If u and w as in Definition 17, then $B_r(x_0) \setminus \mathcal{R}(u, w)$ is of finite Hausdorff $(n-1)$-measure for any $r \in (0, \sigma_0)$.

13
Proof. Since $\mathcal{R}(w)$ is of Hausdorff codimension ≥ 2 by [GS], the assertion follows from Lemma 18. q.e.d.

Let $x \in S_j(u)$. Translating if necessary, assume $V(0) = 0$. Recall from (8) that the blow up maps of u at x are the maps

$$u_\sigma(x) = (V_\sigma(x), v_\sigma(x)) := (\mu_\sigma^{-1}V(\sigma x), \mu_\sigma^{-1}v(\sigma x))$$

into $(\mathbb{R}^j \times Y_2^{k-j}, G_\sigma)$ where $G_\sigma(y) = G(\mu_\sigma y)$. Also recall that the tangent map is a map into $(C, G(u(x)))$ by Lemma 11.

Lemma 20 If $u_* : (B_1(0), g(0)) \to (\mathbb{R}^j \times Y_2^{k-j}, G(u(x)))$ is a tangent map of u at $x \in S_j(u)$, then $v_* := \pi_2 \circ u_* \equiv P_0$.

Proof. Assume on the contrary that $v_* \neq P_0$. Since u_* is a homogeneous degree 1 map, so is v_*. By Proposition 3.1 of [GS] v_* maps into a flat F_0 of Y_2^{k-j} of dimension l. Let X_0 be the union of all k-flats containing F_0. By Lemma 6.2 of [GS], X_0 is isometric to $\mathbb{R}^{j+l} \times Z_2^{k-j-l}$ and u_* is effectively contained in $\mathbb{R}^{j+l} \times Z_2^{k-j-l}$. Since $\sup_{B_r(x)} d(u, \exp_{u(x)}^Y) \circ u_* \circ (\exp_{u(x)}^\Omega)^{-1} \to 0$ as $r \to 0$, this implies that $x \in S^+_{j+1}(u)$ by Theorem 5.1 of [GS] which contradicts that $x \in S_j(u)$. q.e.d.

4 Metric estimates near a singular point

Given a harmonic map $u : \Omega \to (Y, d_G)$, the goal of this section is to derive some estimates of the metric near $u(x_*)$ for $x_* \in S_j(u)$, $j > 0$. Thus, let $(\mathbb{R}^j \times Y_2^{k-j}, d_G)$ and (Y_2^{k-j}, d_h) be as in (14). We will denote by $V = (V^1, \ldots, V^j)$ the standard coordinates of \mathbb{R}^j, $v = (v^{j+1}, \ldots, v^{k})$ the standard coordinates of \mathbb{R}^{k-j} and (V, v) the standard coordinates of $\mathbb{R}^j \times \mathbb{R}^{k-j}$.

We will first construct a coordinate chart for a DM M of $(\mathbb{R}^j \times Y_2^{k-j}, d_G)$ in a neighborhood of $(0, P_0)$. First, we identify $\mathbb{R}^j \times \{0\}$ with the lowest dimensional singular locus $\mathbb{R}^j \times \{P_0\} \subset M$ of $\mathbb{R}^j \times Y_2^{k-j}$ by the identity map. Next, let $\{e_{j+1}(V, 0), \ldots, e_k(V, 0)\}$ be an orthonormal frame of the normal space to $\mathbb{R}^j \times \{0\}$ in M. Furthermore, for each $V \in \mathbb{R}^j$, let $\Phi_V : \mathbb{R}^k \to M$ be a normal coordinate chart centered at $(V, 0)$ with

$$d\Phi_V|_{T(V,0)\mathbb{R}^k} \left(\frac{\partial}{\partial u^m} \right) = e_m(V, 0), \ \forall m = j+1, \ldots, k.$$
Finally, we construct coordinates for a neighborhood of \((0,0) \in M\) by defining a diffeomorphism \(\Phi\) that agrees with the normal coordinate chart \(\Phi_V\) on the slice \(\{V\} \times \mathbb{R}^{k-j}\). More precisely, for a sufficiently small neighborhood \(U\) of \((0,0) \in \mathbb{R}^j \times \mathbb{R}^{k-j}\), define coordinates \((V,v)\) via the coordinate chart

\[
\Phi : U \subset \mathbb{R}^j \times \mathbb{R}^{k-j} \rightarrow \Phi(U) \subset M, \quad \Phi(V,v) = \Phi_V|_{\{0\} \times \mathbb{R}^{k-j}}(v).
\]

We are only interested in the local properties of \((\mathbb{R}^j \times \mathbb{Y}^{k-j}, d_G)\). Hence, by an abuse of notation, we will identify each \(\text{DM} M\) with \(\mathbb{R}^j \times \mathbb{R}^{k-j}\) along with (the extension of) the pullback of the metric \(G\) via the coordinates \((V,v)\) (which we shall still denote by \(G\)). In particular, since \(\mathbb{R}^j \times \mathbb{Y}^{k-j}\) is a union of \(k\)-flats \(\{F_i\}\) and \((F_i, G|_{F_i})\) is a DM for each \(i\) (cf. (13)), we can express every point \(P \in \mathbb{R}^j \times \mathbb{Y}^{k-j}\) as \(P = (V,v)\).

Lemma 21 Let \(M = (\mathbb{R}^j \times \mathbb{R}^{k-j}, G)\) be a DM in \((\mathbb{R}^j \times \mathbb{Y}^{k-j}, d_G)\) and let

\[
G = \begin{pmatrix}
G_{11}(V,v) & G_{12}(V,v) \\
G_{21}(V,v) & G_{22}(V,v)
\end{pmatrix}
\]

be the matrix representation of \(G\) with

\[
G_{11}(V,v) = (G_{IJ}(V,v)) \quad G_{12}(V,v) = (G_{IJ}(V,v)) \\
G_{21}(V,v) = (G_{IJ}(V,v)) \quad G_{22}(V,v) = (G_{lm}(V,v))
\]

for \(I,J = 1, \ldots, j\) and \(l,m = j+1, \ldots, k\). Then for \((V,v)\) sufficiently close to \((0,0)\), there exists a constant \(C > 0\) depending only on

\[
\text{the sup norm of the second derivatives of the metric } G,
\]

such that

\[
|G_{IJ}(V,v) - G_{IJ}(V,0)| \leq C|v|^2, \quad |\frac{\partial}{\partial V^I} G_{IJ}(V,v)| \leq C|v| \\
|G_{IJ}(V,v)| \leq C|v|^2, \quad |G_{IJ}(V,v)| \leq C|v| \\
|G_{lm}(V,v) - \delta_{lm}| \leq C|v|^2, \quad |\dot{G}_{lm}(V,v)| \leq C|v| \quad (18)
\]

In the above, \(\dot{G}\) is used indicate any derivatives (i.e. \(\frac{\partial}{\partial V^I}\) or \(\frac{\partial}{\partial v^l}\)) of \(G\).
Proof. To prove (18), we first verify the following equalities:

\[
(i) \quad \frac{\partial}{\partial V^J} < \frac{\partial}{\partial V^I}, \frac{\partial}{\partial v^l} > (V, 0) = 0
\]
\[
(ii) \quad \frac{\partial}{\partial v^m} < \frac{\partial}{\partial V^I}, \frac{\partial}{\partial v^l} > (V, 0) = 0
\]
\[
(iii) \quad \frac{\partial}{\partial v^m} < \frac{\partial}{\partial V^I}, \frac{\partial}{\partial V^J} > (V, 0) = 0
\]
\[
(iv) \quad \frac{\partial}{\partial V^I} < \frac{\partial}{\partial v^l}, \frac{\partial}{\partial v^m} > (V, 0) = 0
\]
\[
(v) \quad \frac{\partial}{\partial v^m} < \frac{\partial}{\partial v^l}, \frac{\partial}{\partial v^p} > (V, 0) = 0.
\]

Indeed, since \(\{e_m(V, 0)\}_{m=j+1,...,k}\) is an orthonormal frame of the normal space of \(\mathbb{R}^j \times \{P_0\}\), we have that

\[
< \frac{\partial}{\partial V^I}, \frac{\partial}{\partial v^l} > (V, 0) \equiv 0 \quad \text{and} \quad < \frac{\partial}{\partial v^l}, \frac{\partial}{\partial v^m} > (V, 0) \equiv \delta_{lm}
\]

which immediately implies (i) and (iv). We next verify (ii). Fix \((V_0, 0)\) and identify \((V_0, 0) = (0, 0)\) for simplicity. Denoting the normal coordinates centered at \((0, 0)\) by \((\tilde{V}, \tilde{v})\), we have

\[
\nabla_X \frac{\partial}{\partial \tilde{v}^m}(0, 0) = 0, \forall X \in T_{(0,0)}\mathbb{R}^k, m = j + 1, \ldots, k.
\]

(19)

Since \(v = \tilde{v}\) on the slice \(\{0\} \times \mathbb{R}^{k-j}\) by the definition of \(\Phi\), we have

\[
\frac{\partial}{\partial v^m}(0, v) = \frac{\partial}{\partial \tilde{v}^m}(0, v).
\]

(20)

Furthermore, \((V, \tilde{v}) \mapsto (V, v)\) is a diffeomorphism in a neighborhood of \((0, 0)\), and hence \((V, \tilde{v})\) are also coordinates in a neighborhood of \((0, 0)\). In particular, this implies that

\[
\nabla_{\frac{\partial}{\partial \tilde{v}^m}} \frac{\partial}{\partial V^I} = \nabla_{\frac{\partial}{\partial \tilde{v}^m}} \frac{\partial}{\partial v^l}.
\]

(21)

Thus, we have at \((0, 0)\)

\[
\frac{\partial}{\partial v^m} < \frac{\partial}{\partial V^I}, \frac{\partial}{\partial v^l} > = \frac{\partial}{\partial \tilde{v}^m} < \frac{\partial}{\partial V^I}, \frac{\partial}{\partial \tilde{v}^l} > \quad \text{by (20)}
\]
\[
\begin{align*}
&= \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial v^l} \rangle + \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial v^l} \rangle \\
&= \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial v^l} \rangle \quad \text{by (19)} \\
&= \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial v^l} \rangle \quad \text{by (21)} \\
&= 0 \quad \text{by (19)}
\end{align*}
\]
which proves \((ii)\). Similarly for \((iii)\) and \((v)\), we have at \((0, 0)\)
\[
\frac{\partial}{\partial v^m} \langle \frac{\partial}{\partial v^l}, \frac{\partial}{\partial v^m} \rangle = \frac{\partial}{\partial \tilde{V}^m} \langle \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle
\]
\[
= \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle + \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle
\]
\[
= 0
\]
and
\[
\frac{\partial}{\partial v^m} \langle \frac{\partial}{\partial v^l}, \frac{\partial}{\partial v^m} \rangle = \frac{\partial}{\partial \tilde{V}^m} \langle \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle
\]
\[
= \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle + \langle \nabla \frac{\partial}{\partial \tilde{V}^l}, \frac{\partial}{\partial \tilde{V}^m} \rangle
\]
\[
= 0.
\]

The estimates of (18) follow from the inequalities \((i)\) through \((v)\). Here, we will only prove
\[
|G_{11}(V, v) - G_{11}(V, 0)| \leq C|v|^2 \quad \text{(22)}
\]
and
\[
\left| \frac{\partial}{\partial v^l} G_{11}(V, v) \right| \leq C|v| \quad \text{(23)}
\]
since the other estimates follow by a similar argument. To prove (22), first apply the Mean Value Theorem and the chain rule to obtain for some \(\tau \in (0, 1)\)
\[
G_{11}(V, v) - G_{11}(V, 0) = \left(\frac{\partial}{\partial t} G_{11}(V, tv) \right) \bigg|_{t=\tau}
\]
\[
= \sum_{m=j+1}^{k} v^m \frac{\partial}{\partial v^m} G_{11}(V, \tau v).
\]
Since \((iii)\) implies
\[
\frac{\partial}{\partial v^m} G_{11}(V, 0) = 0, \quad \forall m = j + 1, \ldots, k,
\]
we have for some \(\sigma \in (0, 1)\)
\[
\frac{\partial}{\partial v^m} G_{11}(V, \tau v) = \left(\frac{\partial}{\partial s} \left(\frac{\partial}{\partial v^m} G_{11}(V, s \tau v) \right) \right)_{s=\sigma}
= \sum_{l=j+1}^{k} \tau v^l \frac{\partial^2}{\partial v^m \partial v^m} G_{11}(V, \sigma \tau v).
\]
Together, we have
\[
G_{11}(V, v) - G_{11}(V, 0) = \sum_{l,m=j+1}^{k} \tau v^l v^m \frac{\partial^2}{\partial v^m \partial v^m} G_{11}(V, \sigma \tau v)
\]
which implies (22) with \(C\) as in (17). To prove (23), we first note that
\[
\frac{\partial}{\partial v^l} G_{11}(V, 0) = 0 \text{ by } (ii).
\]
Thus, for some \(\tau \in (0, 1)\)
\[
\frac{\partial}{\partial v^l} G_{11}(V, v) = \left(\frac{\partial}{\partial t} \left(\frac{\partial}{\partial v^l} G_{11}(V, tv) \right) \right)_{t=\tau}
= \sum_{l=j+1}^{k} v^l \frac{\partial^2}{\partial v^m \partial v^l} G_{11}(V, \tau v)
\]
which implies (23) with \(C\) as in (17). Q.E.D.

5 Preliminary Lemmas

We will now study the local behavior of harmonic maps. Recall that we denote by \(\{\mathbb{R}^j \times F_i\}\) (resp. \(\{F_i\}\)) the set DM’s of the NPC space \((Y, d_G)\) (resp. \((Y_2, d_h)\)). The Riemannian manifold \((\mathbb{R}^j \times F_i, G)\) (resp. \((F_i, h)\)) is embedded isometrically and totally geodesically in \((Y, d_G)\) (resp. \((Y_2, d_h)\)). We want to study a harmonic map
\[
u = (V, v) : (B_{\sigma}, (x_*) \times (Y, d_G)) \to \mathbb{R}^j \times Y_2^{k-j}, d_G
\]
as in (16). Below we summarize all the notation and list the relevant properties of the spaces and maps that we will be using in the sequel.
Remark 22 The metric space of the form \((Y, d_G)\) above is a special case of Differentiable Manifold spaces or simply DM-spaces. The Weil-Petersson completion of Teichmüller space is an example of such space and will be explored in a sequel paper.

Assumption 1 The metrics \(G\) and \(h\) above satisfy the estimates of Lemma 21. For future reference though we will state these estimates in a slight more general setup. Let \(H\) be a Riemannian metric on \(\mathbb{R}^j\), \(h\) a metric on \(Y^{k-j}\) (not necessarily Euclidean) and let

\[
G_0(V, v) = H(V) \oplus h(v)
\]

be the product metric on the union of \(\mathbb{R}^j \times F^{k-j}\). We assume that the metric \(G\) is asymptotically \(G_0\) as \(v \to P_0\) in the sense that it satisfies the following analogous estimates as in Lemma 21. There exist constants \(C > 0\) and \(\epsilon \in (0, \frac{1}{2})\) such that if, with respect to the standard coordinates \((V^1, \ldots, V^j)\) on \(\mathbb{R}^j\) and some coordinates \((v^{j+1}, \ldots, v^k)\) on \(F^{k-j}\), at \(P_0\) we have

\[
H(V) = (H_{IL}(V)), \quad H^{-1}(V) = (H^{IL}(V)),
\]

\[
h(v) = (h_{il}(v)), \quad h^{-1}(v) = (h^{il}(v)),
\]

\[
G(V, v) = \begin{pmatrix}
G_{IL}(V, v) & G_{II}(V, v) \\
G_{II}(V, v) & G_{il}(V, v)
\end{pmatrix}, \quad G^{-1}(V, v) = \begin{pmatrix}
G^{IL}(V, v) & G^{II}(V, v) \\
G^{II}(V, v) & G^{il}(V, v)
\end{pmatrix}
\]

with \(I, L = 1, \ldots, j\) and \(i, l = j + 1, \ldots, k\) then the following estimates hold:

\(C^0\)-estimates:

\[
|G_{IJ}(V, v) - H(V)_{IJ}| \leq CH(V)^{\frac{1}{2}}H(V)^{\frac{1}{2}}d^2(v, P_0)
\]

\[
|G_{IJ}(V, v)| \leq CH(V)^{\frac{1}{2}}h(v)^{\frac{1}{2}} d^2(v, P_0)
\]

\[
|G_{ij}(V, v) - h_{ij}(v)| \leq Ch(v)^{\frac{1}{2}}h(v)^{\frac{1}{2}} d^2(v, P_0)
\]

\(C^1\)-estimates:
In this paper, we are interested in the case where the above metric estimates follow immediately by Lemma 21.

\[|\frac{\partial}{\partial v^i} G_{JK}(V,v)| \leq CH(V)^{\frac{1}{2}} H(V)^{\frac{1}{2}} J J H(V)^{\frac{1}{2}} \]

\[|\frac{\partial}{\partial v^i} G_{IJ}(V,v)| \leq Ch(v)^{\frac{1}{2}} H(V)^{\frac{1}{2}} J J H(V)^{\frac{1}{2}} d(v, P_0) \]

\[|\frac{\partial}{\partial v^i} G_{ij}(V,v)| \leq CH(V)^{\frac{1}{2}} h(v)^{\frac{1}{2}} H(V)^{\frac{1}{2}} d(v, P_0) \]

\[|\frac{\partial}{\partial v^i} (G_{ij}(V,v) - h_{ij}(v))| \leq Ch(v)^{\frac{1}{2}} h(v)^{\frac{1}{2}} d(v, P_0) \]

C0-estimates of the inverse:

\[|G^{ij}(V,v) - H^{ij}(V)| \leq CH^{\frac{1}{2}} H^{\frac{1}{2}} d^2(v, P_0) \]

\[|G^{ij}(V,v)| \leq CH^{\frac{1}{2}} h^{\frac{1}{2}} d^2(v, P_0) \]

\[|G^{ij}(V,v) - h^{ij}(v)| \leq Ch^{\frac{1}{2}} h^{\frac{1}{2}} d^2(v, P_0) \]

Non-degeneracy condition for \(H \) and \(h \) with respect to the coordinates \((V^1, \ldots, V^j) \) and \((v^{j+1}, \ldots, v^k) \):

\[H_{IJ}(V) \leq \epsilon H_{II}(V)^{\frac{1}{2}} H_{JJ}(V)^{\frac{1}{2}} (I \neq J), \quad h_{ij}(v) \leq \epsilon h_{ii}(v)^{\frac{1}{2}} h_{jj}(v)^{\frac{1}{2}} (i \neq j) \]

\[H_{II}(V) H^{IJ}(V) \leq C, \quad h_{ii}(v) h_{jj}(v) \leq C \]

Bounds on the derivatives for \(H \) and \(h \):

\[|\frac{\partial}{\partial v^i} H_{JK}(V)| \leq CH^{\frac{1}{2}} H_{IJ}(V)^{\frac{1}{2}} H_{KK}(V)^{\frac{1}{2}} \]

\[d(v, P_0) |\frac{\partial}{\partial v^i} h_{jk}| \leq Ch^{\frac{1}{2}} h^{\frac{1}{2}} h_{kk}(V)^{\frac{1}{2}}. \]

In this paper, we are interested in the case where \(H \) is the Riemannian metric \(G(V,0) \), \(h \) is the Euclidean metric \(h_{ij} = \delta_{ij} \) and \(\frac{\partial}{\partial v^i} h_{ij} = \frac{\partial}{\partial v^i} \delta_{ij} = 0 \). Thus, the above metric estimates follow immediately by Lemma 21.

Remark 23 If \(G, H \) and \(h \) satisfy Assumption 1, then we have the following bounds for the Christoffel symbols:

\[|H^{\frac{1}{2}}_I H^{\frac{1}{2}}_{JK}| \leq CH^{\frac{1}{2}} J J H^{\frac{1}{2}}_{KK}, \quad d(v, P_0) h^{\frac{1}{2}} h^{\frac{1}{2}} \Gamma^{i}_{jk} | \leq Ch^{\frac{1}{2}} h^{\frac{1}{2}}. \]
Furthermore, we have the following decay estimates:

\[
\begin{align*}
|H_{Il}^{1/2}(Γ_{JK} - HΓ_{JK}^l)| & \leq CH_{jl}^{1/2}H_{KK}^{1/2}, \\
|H_{Il}^{1/2}Γ_{jk}^l| & \leq Cd(v, P_0)H_{jl}^{1/2}H_{kk}^{1/2}, \\
|h_{ii}^{1/2}Γ_{jk}^i| & \leq Cd(v, P_0)h_{jj}^{1/2}H_{KK}^{1/2}, \\
|h_{ii}^{1/2}Γ_{jk}^i| & \leq Cd(v, P_0)H_{jl}^{1/2}H_{kk}^{1/2}, \\
|h_{ii}^{1/2}Γ_{JK}^i| & \leq Cd(v, P_0)H_{jl}^{1/2}H_{KK}^{1/2}.
\end{align*}
\]

Indeed, Cauchy-Schwarz, (27) and (28) imply

\[
\begin{align*}
|d(v, P_0)h_{ii}^{1/2}Γ_{jk}^i| &= d(v, P_0)h_{ii}^{1/2}h_{il}^{1/2}(h_{lj}^{1/2}h_{kk}^{1/2})^{1/2} \\
&\leq C(h_{jj}^{1/2}h_{kk}^{1/2}).
\end{align*}
\]

Furthermore, Cauchy-Schwarz, (25), (26) and (27) imply

\[
\begin{align*}
|H_{Il}^{1/2}(Γ_{JK} - HΓ_{JK}^l)| &= H_{Il}^{1/2}|G^{il}(Γ_{JK} - HΓ_{JK}^l) - H^{il}(H_{JK} - H_{JK}^l)| \\
&\leq H_{Il}^{1/2}(|G^{ll} - H^{ll})(G_{ll,k} + G_{kk,j} - G_{JK,l})| \\
&\quad + H_{Il}^{1/2}|G^{il}(G_{lk,j} + G_{kj,l} - G_{JK,l})| \\
&\quad + H_{Il}^{1/2}|H^{ll}(G_{lk,j} + G_{kj,l} - H_{jk,l} + H_{JK,l})| \\
&\leq Cd^2(v, P_0)H_{ll}^{1/2}(H_{ll}H_{JJ}H_{KK})^{1/2} \\
&\quad + Cd^2(v, P_0)H_{ll}^{1/2}(h_{ll}h_{jj}H_{KK})^{1/2} \\
&\quad + C(h_{ll}H_{ll}H_{JJ}H_{KK})^{1/2} \\
&\leq C(H_{JJ}H_{KK})^{1/2}.
\end{align*}
\]

The other estimates follow by similar computations.

Assumption 2 Let metrics \(G \) and \(h \) defined on \(\mathbb{R}^j \times Y_{2}^{k-j} \) and \(Y_{2}^{k-j} \) satisfying Assumption 1 and

\[
u = (V, v) : (B_{σ_*,(x_*)}, d_G) \to Y
\]
be a harmonic map. By this, we assume that the non-singular component V of u maps into a smooth Riemannian manifold (\mathbb{R}^j, H) and the singular component v of u maps into the NPC space $Y_2 = (Y_2^{k-j}, h)$. Let $S_0(u)$ and $S_j(u)$ be as in Definition 14 (with $\Omega = B_{\sigma_1}(x_*)$). Since the target space is $\mathbb{R}^j \times Y_2^{k-j}$, we have $S_l(u) = \emptyset$ for $l < j$. The set $S_j(u)$ satisfies the following:

(i) For $x \in S_j(u)$, we have by definition that

$$v(x) = P_0.$$

(ii) Moreover, we assume (since we prove Theorem 1 by a backward induction on j in Section 11)

$$\dim_H((S(u) \setminus S_j(u)) \cap B_{\frac{2}{\sigma}}(x_*)) \leq n - 2.$$

Assumption 3 For $B_{\sigma}(x_0) \subset B_{\frac{2}{\sigma}}(x_*)$ and any harmonic map $w : (B_{\sigma}(x_0), g) \to (Y_2^{k-j}, h)$, the set $R(u, w)$ is of full measure in $R(u) \cap B_r(x_0)$ (cf. Definition 17 and Corollary 19).

Assumption 4 For $q \in [1, 2)$ sufficiently close to 2 and any subdomain Ω compactly contained in

$$B_{\frac{2}{\sigma}}(x_*) \setminus \left(S(u) \cap v^{-1}(P_0) \right),$$

there exists a sequence of smooth functions $\{\psi_i\}$ with $\psi_i \equiv 0$ in a neighborhood of $S(u) \cap \Omega$, $0 \leq \psi_i \leq 1$, $\psi_i \to 1$ for all $x \in \Omega \setminus S(u)$ such that

$$\lim_{i \to \infty} \int_{B_{\frac{2}{\sigma}}(x_*)} |\nabla u| |\nabla \psi_i| \, d\mu = 0,$$

$$\lim_{i \to \infty} \int_{B_{\frac{2}{\sigma}}(x_*)} |\nabla u| |\nabla \psi_i|^q \, d\mu = 0$$

and

$$\lim_{i \to \infty} \int_{B_{\frac{2}{\sigma}}(x_*)} |\nabla \nabla u| |\nabla \psi_i| \, d\mu = 0.$$

Assumption 5 For $x \in S_j(u)$, identify $x = 0$ via normal coordinates. Then (cf. Lemma 20) there exists a sequence $\sigma_i \to 0$ such that

$$\lim_{i \to \infty} \mu_{\sigma_i}^{-1} d(v(\sigma_i \cdot), P_0) = 0 \text{ uniformly in compact sets}$$

where $\mu_{\sigma} = \sqrt{\int_{S^2} \frac{I_{x}(\sigma)}{\alpha^{n-1}}}$.

22
By an abuse of notation, we use $\| \cdot \|$ to denote the norms with respect to H, h and G for maps into R^j, Y_2^{k-j} and $R \times Y_2^{k-j}$ respectively. The fact that $G(V,v)$ is asymptotically a product metric $G_0(V,v) = H(V) \oplus h(v)$ as $v \to P_0$ yields the following lemma.

Lemma 24 Let metrics G and h defined on $R^j \times Y_2^{k-j}$ and Y_2^{k-j} satisfy Assumption 1 and

$$
\hat{u} : (\hat{V}, \hat{v}) : (B_{\sigma_*}(x_*), g) \to (R^j \times Y_2^{k-j}, d_G)
$$

be a Lipschitz map. For every $x \in \hat{R}(\hat{u}) \cap B_{\sigma_*}(x_*)$ and for almost every $x \in B_{\sigma_*}(x_*)$, we have

$$
\left| |\nabla \hat{u}|^2(x) - (|\nabla \hat{V}|^2(x) + |\nabla \hat{v}|^2(x)) \right| \leq C d^2(\hat{v}(x), P_0)
$$

where the constant C depends on the Lipschitz constant of \hat{u} and the C^2 estimates of G.

Proof. We first prove that for $P, Q \in B_{\lambda}(P_0)$, we have

$$
(1 - C\lambda^2) \leq \frac{d_{H \oplus h}(P, Q)}{d_{G_\lambda}(P, Q)} \leq (1 + C\lambda^2).
$$

(31)

Indeed, the properties of G imply that for any vector γ', we have

$$
|<\gamma', \gamma'>_{H \oplus h} - <\gamma', \gamma'>_{G_\lambda}| \leq C\sigma^2 <\gamma', \gamma'>_{H \oplus h}.
$$

Let

$$
\gamma : [0, d_{G_\lambda}(P, Q)] \to R^{2j} \times H^{k-j}
$$

be the arclength parameterized geodesic with respect to d_{G_λ} between P and Q. Then

$$
\begin{align*}
\d_{H \oplus h}^2(P, Q) & \leq \left(\int_0^{d_{G_\lambda}(P, Q)} <\gamma', \gamma'>_{H \oplus h} dt \right)^2 \\
& \leq d_{G_\lambda}(P, Q) \int_0^{d_{G_\lambda}(P, Q)} <\gamma', \gamma'>_{H \oplus h} dt \\
& \leq (1 + C\sigma^2) d_{G_\lambda}(P, Q) \int_0^{d_{G_\lambda}(P, Q)} <\gamma', \gamma'>_G dt \\
& \leq d_{G_\lambda}(P, Q) \left(1 + C\sigma^2\right).
\end{align*}
$$

23
Next, let

$$\gamma : [0, d_{H \oplus h}(P, Q)] \to \mathbb{R}^j \times Y_2^{k-j}$$

be the arclength parameterized geodesic with respect to $d_{H \oplus h}$ between P and Q. Thus

$$d_{G_\sigma}^2(P, Q) \leq \left(\int_0^{d_{H \oplus h}(P, Q)} \langle \gamma', \gamma' \rangle_{G_\sigma} dt \right)^2$$

$$\leq d_{H \oplus h}(P, Q) \int_0^{d_{H \oplus h}(P, Q)} \langle \gamma', \gamma' \rangle_{H \oplus h} dt$$

$$\leq (1 + C \sigma^2) d_{H \oplus h}(P, Q) \int_0^{d_{H \oplus h}(P, Q)} \langle \gamma', \gamma' \rangle_{H \oplus h} dt$$

$$\leq d_{H \oplus h}(P, Q) \left(1 + C \sigma^2 \right).$$

This completes the proof of (31). By the definition of energy density in [KS1], this immediately implies for almost every $x \in B_\sigma(x)$ and for every $x \in B_\sigma(x)$ such that $\tilde{u}(B_\delta(x)) \subset M$ for some DM M,

$$\left| |\nabla \tilde{V}|^2(x) + |\nabla \tilde{v}|^2(x) - |\nabla \tilde{u}|^2 \right| \leq C d^2(\tilde{v}(x), P_0)$$

where C here is as in the assertion of the Lemma. Q.E.D.

We will now apply Lemma 24 to describe tangent maps of u. For this, we use the fact that Y_2^{k-j} is a union of $(k - j)$-dimensional flats $\{F_i\}$. Identifying F_i to \mathbb{R}^{k-j} with the vertex P_0 identified with the origin, we use scalar multiplication to define

$$\mu_{\sigma}^{-1} y = (\mu_{\sigma}^{-1} y_1, \mu_{\sigma}^{-1} y_2)$$

for $y = (y_1, y_2) \in \mathbb{R}^j \times Y_2^{k-j}$, where μ_{σ} as in Assumption 5. Set $G_\sigma(y) = G(\mu_{\sigma}y)$ and $H_\sigma(y) = H(\mu_{\sigma}y)$. For $x \in B_\sigma(x)$ such that $V(x_0) = 0$ and $v(x_0) = P_0$, identify $x = 0$ by normal coordinates and let $g_\sigma(\xi) = g(\sigma \xi)$. We can view the blow up map as

$$u_\sigma : (B_1(0), g_\sigma) \to (\mathbb{R}^j \times Y_2^{k-j}, G_\sigma)$$

defined by

$$u_\sigma(\xi) = \mu_{\sigma}^{-1} u(\sigma \xi).$$
Recall that by Remark 22, G_σ determines uniquely its metric completion on $R^j \times Y^{k-j}_2$). Furthermore, let

\[V_\sigma = \pi_1 \circ u_\sigma : B(0) \to (R^j, H_\sigma) \]

and

\[v_\sigma = \pi_2 \circ u_\sigma : B(0) \to (Y^{k-j}_2, d) \]

be the projection maps. Note that $d(v_\sigma(x'), v_\sigma(x'')) = \mu^{-1}_\sigma d(v(\sigma x'), v(\sigma x''))$ by the homogeneity of the distance function d.

Lemma 25 Let $u : (V, v) : (B_{\sigma_i}(x_\sigma), g) \to (R^j \times Y^{k-j}_2, d_G)$ be a harmonic map into a DM-complex and let $x \in B_{\sigma_i}(x_\sigma)$ such that $V(x) = 0$ and $v(x) = P_0$. Then, there exists a sequence $\sigma_i \to 0$ such that $u_{\sigma_i} = (V_{\sigma_i}, v_{\sigma_i})$ converges locally uniformly in the pullback sense to a degree 1 homogeneous harmonic map

\[
 u_* = (V_*, v_*) : (B_1(0), g(0)) \to (R^j, H(0)) \times (Y^{k-j}_2, d_2)
\]

for some NPC space (Y^{k-j}_2, d_2) where v_* is a constant map. Thus, $u_* = V_*$ where $V_* : (B_1(0), g(0)) \to (R^j, H(0))$.

Proof. Let $\sigma_i \to 0$ be a sequence as in Assumption 5. Choose a subsequence (which we denote again by σ_i by an abuse of notation) such that u_{σ_i} converges to a tangent map u_* locally uniformly in the pullback sense (cf. Section 2). By Lemma 24, V_{σ_i} and v_{σ_i} have uniform modulus of continuity on compact sets independent of σ_i (with respect to the metric $g(0)$ on the domain which is uniformly equivalent to g_{σ_i} for i large). Thus, by [KS2] Proposition 3.7 and a diagonalization argument, there exists a subsequence of σ_i (which we will denote again by σ_i by an abuse of notation) and maps $V_* : R^n \to (R^j, H(0))$ and $v_* : R^n \to (Y^{k-j}_2, d_2)$ for some NPC space (Y^{k-j}_2, d_2) such that V_{σ_i} converges to V_* and v_{σ_i} converges to v_* locally uniformly in the pullback sense. Furthermore, (32) and (32) imply

\[
 d_{G_{\sigma_i}}^2(u_{\sigma_i}(x'), u_{\sigma_i}(x'')) = d_{H_{\sigma_i}}^2(V_{\sigma_i}(x'), V_{\sigma_i}(x'')) + d^2(v_{\sigma_i}(x'), v_{\sigma_i}(x'')) + O(\sigma_i^2).
\]

In particular,

\[
 d_{G_{\sigma_i}}^2(u_*(x'), u_*(x'')) = d_{H(0)}^2(V_*(x'), V_*(x'')) + d_{2_*}^2(v_*(x'), v_*(x''))
\]

and

\[
 d_{H(0)}^2(V_*(x'), V_*(x'')) = d_{H(0)}^2(V_*(x'), V_*(x'')) + d_{2_*}^2(v_*(x'), v_*(x''))
\]

for some NPC space (Y^{k-j}_2, d_2) where v_* is a constant map. Thus, $u_* = V_*$.
and thus \(u_{\sigma_i} \) converges to \((V_*, v_*)\) locally uniformly in the pullback sense. In other words, we can consider \(u_* = (V_*, v_*) \) as a map into the product of \((\mathbb{R}^j, H(0))\) and \((Y_2, d_{2s})\).

Since \(u_* \) is harmonic by (4) and homogeneous of degree 1 (using the fact that \(x \notin \mathcal{S}_0(u) \) by Assumption 2), \(V_* \) and \(v_* \) are also harmonic homogeneous degree 1 maps. Assumption 5 implies

\[
d(v_{\sigma_i}(x), P_0) = \mu_{\sigma_i}^{-1}d(v(\sigma_i x), P_0) \to 0.
\]

Hence \(v_* \) is a constant map and \(u_{\sigma_i} \) converges locally uniformly in the pullback sense to \(V_* \). This completes the proof. Q.E.D.

We will now derive properties of the gradient of our maps on the singular set \(\mathcal{S}_j(u) \). These estimates are necessary because we do not know apriori that \(\mathcal{S}_j(u) \) has measure zero.

Lemma 26 Let \(u : (V, v) : (B_{\sigma_i}(x_*), g) \to (\mathbb{R}_j \times Y_k^{k-j}, d_G) \) be a harmonic map into a DM-complex then

\[
|\nabla v|^2(x) = 0 \text{ and } |\nabla V|^2(x) = |\nabla u|^2(x) \text{ for almost every } x \in \mathcal{S}_j(u).
\]

Proof. Fix \(x \in \mathcal{S}_j(u) \), identify \(x = 0 \) and let \(u_{\sigma_i}, V_{\sigma_i}, v_{\sigma_i}, u_*, V_* \) and \(v_* \) as in Lemma 25. Lemma 24 implies

\[
E^{u_{\sigma_i}}(r) - \left(E^{V_{\sigma_i}}(r) + E^{v_{\sigma_i}}(r) \right) = O(\sigma_i^2)
\]

for any \(r \in (0, 1) \). Thus

\[
\limsup_{i \to \infty} E^{V_{\sigma_i}}(r) \leq \lim_{i \to \infty} E^{V_{\sigma_i}}(r) + \limsup_{i \to \infty} E^{v_{\sigma_i}}(r)
\]

\[
= \lim_{i \to \infty} E^{u_{\sigma_i}}(r)
\]

\[
= E^{u_*}(r)
\]

\[
= E^{V_*}(r) \quad \text{(by Lemma 25)}
\]

\[
\leq \liminf_{i \to \infty} E^{V_{\sigma_i}}(r)
\]

where the last inequality is by the lower semicontinuity of energy [KS2] Lemma 3.8). This immediately implies

\[
\lim_{i \to \infty} E^{V_{\sigma_i}}(r) = \lim_{i \to \infty} E^{u_{\sigma_i}}(r) \quad \text{and} \quad \lim_{i \to \infty} E^{v_{\sigma_i}}(r) = 0.
\]
Now assume that \(x = 0 \) is a Lebesgue point of the \(L^1 \) function \(|\nabla v|^2\). Then we obtain
\[
|\nabla v|^2(0) = \lim_{i \to \infty} \frac{1}{\text{Vol}(B_{\sigma_i r}(0))} \int_{B_{\sigma_i r}(0)} |\nabla v|^2 d\mu
\]
\[
= \lim_{i \to \infty} \frac{\mu_{\sigma_i}^2}{\text{Vol}(B_r(0))} \int_{B_r(0)} |\nabla v_{\sigma_i}|^2 d\mu_{\sigma_i}
\]
\[
= 0 \quad \text{(by Assumption 5)}.
\]
Since almost every point is a Lebesgue point since \(|\nabla v|^2| L^1\), we have proved the first assertion of the lemma. The second assertion follows immediately from the first and Lemma 24. Q.E.D.

Remark 27 In the sections below, we will use the following notation: Given a point \(x \in \mathcal{R}(u) \), let \(\mathbf{R}^j \times F \) be a DM that contains a neighborhood of \(u(x) = (V(x), v(x)) \). Then use the coordinates of Assumption 1 to interpret \(\frac{\partial V}{\partial x^\alpha} \) as a vector in \(\mathbf{R}^j \) and \(\frac{\partial v}{\partial x^\alpha} \) as vectors in \(\mathbf{R}^{k-j} \). For any \(j \times j \)-matrix \(\mathcal{M}_{11} \), \(j \times (k-j) \)-matrix \(\mathcal{M}_{12} \) and \((k-j) \times (k-j)\) matrix \(\mathcal{M}_{22} \), we write
\[
\mathcal{M}_{11} \nabla V \cdot \nabla V, \quad \mathcal{M}_{12} \nabla V \cdot \nabla v \quad \text{and} \quad \mathcal{M}_{22} \nabla v \cdot \nabla v
\]
to denote the inner products defined by
\[
g^{\alpha\beta} \left(\frac{\partial V}{\partial x^\alpha} \right)^T \mathcal{M}_{11} \left(\frac{\partial V}{\partial x^\beta} \right), \quad g^{\alpha\beta} \left(\frac{\partial v}{\partial x^\alpha} \right)^T \mathcal{M}_{12} \left(\frac{\partial V}{\partial x^\beta} \right), \quad g^{\alpha\beta} \left(\frac{\partial v}{\partial x^\alpha} \right)^T \mathcal{M}_{22} \left(\frac{\partial v}{\partial x^\beta} \right)
\]
respectively. In particular, we use this notation to denote the expressions
\[
G_{11}(V,v) \nabla V \cdot \nabla V, \quad G_{12}(V,v) \nabla V \cdot \nabla v \quad \text{and} \quad G_{22}(V,v) \nabla v \cdot \nabla v
\]
where we follow the notation of Lemma 21 and set
\[
G = \left(\begin{array}{cc} G_{11}(V,v) & G_{12}(V,v) \\ G_{21}(V,v) & G_{22}(V,v) \end{array} \right)
\]
with
\[
G_{11}(V,v) = (G_{IJ}(V,v)) \quad G_{12}(V,v) = (G_{II}(V,v)) \\
G_{21}(V,v) = (G_{II}(V,v)) \quad G_{22}(V,v) = (G_{lm}(V,v))
\]
for \(I, J = 1, \ldots, j \) and \(l, m = j + 1, \ldots, k \) to be the matrix representation of \(G \).
6 The Target Variation

Let metrics G and h defined on $\mathbb{R}^j \times Y_2^{k-j}$ and Y_2^{k-j} and let $u = (V, v) : B_{\sigma}(x_*) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. The main goal of this section is to obtain estimates for the target variation of the singular component map $v : B_{\sigma}(x_*) \to (Y_2^{k-j}, d_h)$. Let $r_0 > 0$ such that $B_{r_0}(x_0) \subset B_{\sigma}(x_*)$ and $w : B_{r_0}(x_0) \to (Y_2^{k-j}, d_h)$ be a harmonic map. For $\sigma \in (0, r_0)$, w is Lipschitz continuous in $B_\sigma(x_0)$ by [KS1] Theorem 2.4.6. For $t \in [0, 1]$ and $\eta \in C^\infty_c(B_\sigma(x_0))$ with $0 \leq \eta \leq 1$, define

$$v_{t \eta} : B_\sigma(x_0) \to (Y_2^{k-j}, d_h)$$

by setting

$$v_{t \eta}(x) = (1 - t\eta(x))v(x) + t\eta(x)w(x)$$ \hspace{1cm} (32)

where the sum indicates geometric interpolation. Furthermore, define

$$u_{t \eta} : B_\sigma(x_0) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$$

by setting

$$u_{t \eta} = (u, v_{t \eta}).$$ \hspace{1cm} (33)

Let $x \in B_\sigma(x_0) \cap \mathcal{R}(u, w)$; this means that there exists $\delta > 0$ and a DM $F \subset Y_2^{k-j}$ that contains $v(B_\delta(x))$ and $w(B_\delta(x))$. Since F is geodesically convex in Y_2^{k-j}, it also contains all geodesics from $v(x')$ to $w(x')$ for all $x' \in B_\delta(x)$. Hence, F contains $v_{t \eta}(x')$ for all $x' \in B_\delta(x), t \in [0, 1]$. In Lemma 28 below, we interpret $\frac{\partial v_{t \eta}}{\partial x^\beta}$ as a section of $\phi^{-1}(TF)$ where $\phi : [0, 1] \times B_\delta(x) \to (Y_2^{k-j}, d_h)$ is the map $\phi(t, x) = v_{t \eta}(x)$. Furthermore, $h\nabla$ denotes the connection on $\phi^{-1}(TF)$ induced by the Levi-Civita connection on F.

Lemma 28 Let metrics G and h defined on $\mathbb{R}^j \times Y_2^{k-j}$ and Y_2^{k-j} and $u = (V, v) : B_{\sigma}(x_*) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. For $v_{t \eta}$ defined in (32), there exists $C > 0$ such that for $\beta = 1, \ldots, n$ and $x \in B_{\sigma}(x_0) \cap \mathcal{R}(u, w)$, we have

$$\left| h\nabla \frac{\partial v_{t \eta}}{\partial x^\beta} \right| \leq C.$$ \hspace{1cm} (34)
Proof. The first step is to prove the assertion under the assumption that one of the maps \(v \) or \(w \) are constant identically equal to \(Q_0 \). We will only prove the latter case since the argument for the former case is analogous. Fix \(x \in B_r(x_0) \cap \mathcal{R}(u, w) \) and \(t \in (0, 1) \). We are also assuming \(\eta \equiv 1 \). Let \(F \) be a DM that contains \(v(B_\delta(x)) \) and \(Q_0 \) and \(\gamma \) be the arclength parameterized geodesic ray starting at \(Q_0 \) and ending at \(v(x) \). For each \(r > 0 \) close to \(t \), let \((\theta^1, \theta^2, \ldots, \theta^{k-j-1}) \) be the normal coordinates centered at \(\gamma(t) \) for the radius \(r \) sphere \(\partial B_r(Q_0) \) in \((F, h)\). We use this to define coordinates in a neighborhood \(\mathcal{N} \) of \(v(x) \); more specifically, the coordinates of a point \(P \) close to \(v_t(x) \) is \((r, \theta^1, \ldots, \theta^{k-j-1})\) where \(r = d(P, Q_0) \) and \((\theta^1, \ldots, \theta^{k-j-1})\) are the coordinates of \(P \) as a point in \(\partial B_r(Q_0) \).

Since \(r \) is the distance from \(Q_0 \) and \(\gamma \) intersects \(\partial B_r(Q_0) \) orthogonally, the components of \(h \) with respect to these coordinates satisfy

\[h_{rr} = 1, \; h_{r\theta} = 0 \text{ in all of } \mathcal{N}. \]

Furthermore, the choice of \((\theta^1, \ldots, \theta^{k-j-1})\) as the normal coordinates of \(\partial B_r(Q_0) \) centered \(\gamma(t) \) implies that

\[h_{\theta\theta} = \delta^i_j \text{ along } \gamma \text{ in } \mathcal{N}. \]

Thus, the Christoffel symbols along \(\gamma \) in the coordinates \((r, \theta^1, \ldots, \theta^{k-j-1})\) satisfy

\[
\begin{align*}
\hat{h} \Gamma^r_{rr} &= h_{rr} h_{rr,r} + h_{r\theta} (h_{\theta r,r} + h_{\theta r,r} - h_{rr,\theta}) = 0, \\
\hat{h} \Gamma^r_{\theta r} &= h_{rr} h_{r\theta} (h_{\theta r,r} + h_{\theta r,r} - h_{rr,\theta}) = 0, \\
\hat{h} \Gamma^r_{\theta \theta} &= h_{rr} (h_{\theta r,\theta} + h_{\theta r,\theta} - h_{r\theta,\theta}) + h_{r\theta} (h_{\theta r,\theta} + h_{\theta r,\theta} - h_{r\theta,\theta}) = 0, \\
\hat{h} \Gamma^r_{\theta \theta} &= h_{rr} (h_{\theta r,\theta} + h_{\theta r,\theta} - h_{r\theta,\theta}) + h_{r\theta} (h_{\theta r,\theta} + h_{\theta r,\theta} - h_{r\theta,\theta}) = 0.
\end{align*}
\]

Using the above identities, we obtain

\[
\begin{align*}
\hat{h} \nabla_{\frac{\partial}{\partial \theta^i}} \frac{\partial v_t}{\partial x^j} &= \hat{h} \nabla_{\frac{\partial}{\partial \theta^i}} \frac{\partial v_t^r}{\partial r} + \hat{h} \nabla_{\frac{\partial}{\partial \theta^i}} \frac{\partial v_t^\theta}{\partial \theta^j} \\
&= \frac{\partial^2 v_t^r}{\partial t \partial x^j} \frac{\partial}{\partial r} + \frac{\partial v_t^r}{\partial t} \frac{\partial v_t^\theta}{\partial x^j} \frac{\partial}{\partial \theta^i} + \frac{\partial v_t^\theta}{\partial x^j} \frac{\partial v_t^r}{\partial \theta^k} \left(\hat{h} \Gamma^r_{rr} \frac{\partial}{\partial r} + \hat{h} \Gamma^r_{rv} \frac{\partial}{\partial v_t^r} \right). \\
&= \frac{\partial^2 v_t^r}{\partial t \partial x^j} \frac{\partial}{\partial r} + \frac{\partial v_t^r}{\partial t} \frac{\partial v_t^\theta}{\partial x^j} \frac{\partial}{\partial \theta^i} + \frac{\partial v_t^\theta}{\partial x^j} \frac{\partial v_t^r}{\partial \theta^k} \left(\hat{h} \Gamma^r_{rr} \frac{\partial}{\partial r} + \hat{h} \Gamma^r_{rv} \frac{\partial}{\partial v_t^r} \right).
\end{align*}
\]
Thus, the assertion for this case follows with C dependent on the Lipschitz constant of v.

The second step is to consider the case when $v(x)$ and $w(x)$ are arbitrary and $\eta(x) \equiv 1$. Fix $x \in \mathcal{R}(u, w)$ and define

$$\tilde{v}_t(x') := (1 - t)v(x') + tw(x)$$

and

$$\tilde{w}_t(x') := (1 - t)v(x) + tw(x')$$

for x' close to x and $t \in [0, 1]$. Since \tilde{v}_t, \tilde{w}_t and v_t are geodesic interpolation maps,

$$t \mapsto \frac{\partial \tilde{v}_t}{\partial x^\beta}(x), \quad t \mapsto \frac{\partial \tilde{w}_t}{\partial x^\beta}(x) \quad \text{and} \quad t \mapsto \frac{\partial v_t}{\partial x^\beta}(x)$$

are Jacobi fields along the geodesic $\gamma(t) = (1 - t)v(x) + tw(x)$. Since $x \mapsto \tilde{w}_t(x)$ is constant for $t = 0$, we have

$$\left.\frac{\partial \tilde{v}_t}{\partial x^\beta}(x)\right|_{t=0} + \left.\frac{\partial \tilde{w}_t}{\partial x^\beta}(x)\right|_{t=0} = \left.\frac{\partial v_t}{\partial x^\beta}(x)\right|_{t=0}.$$

Similarly, since $x \mapsto \tilde{v}_t(x)$ is a constant for $t = 1$, we have

$$\left.\frac{\partial \tilde{v}_t}{\partial x^\beta}(x)\right|_{t=1} + \left.\frac{\partial \tilde{w}_t}{\partial x^\beta}(x)\right|_{t=1} = \left.\frac{\partial v_t}{\partial x^\beta}(x)\right|_{t=1}.$$

Thus, the uniqueness of the solution of the Jacobi equation implies that

$$\frac{\partial \tilde{v}_t}{\partial x^\beta}(x) + \frac{\partial \tilde{w}_t}{\partial x^\beta}(x) = \frac{\partial v_t}{\partial x^\beta}(x), \quad \forall t \in [0, 1]. \quad (35)$$

From the first step, we obtain that

$$\left| h \nabla_{\frac{\partial \tilde{v}_t}{\partial x^\beta}}(x) \right|, \quad \left| h \nabla_{\frac{\partial \tilde{w}_t}{\partial x^\beta}}(x) \right| \leq C. \quad (36)$$
Thus, the assertion in the second step follows immediately from (35) and (36). Finally we come to the general case when η is arbitrary. If $\psi : [0, 1] \times B_\delta(x) \to (Y_2^{k-j}, d_h)$ is the map $\psi(t, x) = v_t(x)$, then $\phi(t, x) = \psi(t\eta, x) = v_{t\eta}(x)$. From the second step we know that $\left| h \nabla_{\frac{dt}{dt}} \frac{\partial \psi(x, t)}{\partial x^\beta} \right| \leq C$, hence by the chain rule we obtain $\left| h \nabla_{\frac{dt}{dt}} \frac{\partial \phi(x, t)}{\partial x^\beta} \right| \leq C$. Q.E.D.

Remark 29 In the case the target metric $h_{ij} = \delta_{ij}$ is Euclidean, which is the case for DM-complexes, the proof of the Lemma above is simpler. Indeed,

$$\frac{d}{dt} \frac{\partial v_{t\eta}}{\partial x^\beta} = \frac{\partial}{\partial x^\beta} \eta(v^j - w^j) = \eta \left(\frac{\partial v^j}{\partial x^\beta} - \frac{\partial w^j}{\partial x^\beta} \right) + \frac{\partial \eta}{\partial x^\beta} (v^j - w^j) \leq C.$$

Lemma 30 Let metrics G and h defined on $R^j \times Y_2^{k-j}$ and Y_2^{k-j} and $u = (V, v) : B_{\sigma}(x_*) \to (R^j \times Y_2^{k-j}, d_G)$ be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. If $v_{t\eta}$, $u_{t\eta}$ are as in (32), (33) respectively, then

$$|\nabla u_{t\eta}|^2(x) - |\nabla u|^2(x) = |\nabla v_{t\eta}|^2(x) - |\nabla v|^2(x) + O(t^2)$$

for almost every $x \in S_j(u)$ where $O(t^2)$ is a term which is quadratic in t.

Proof. For $x \in S_j(u)$, we have $v(x) = P_0$ by Assumption 2 (i). Thus,

$$d(v_{t\eta}(x), P_0) \leq d(v_{t\eta}(x), v(x)) + d(v(x), P_0) = t\eta d(v, w)(x).$$

Furthermore, by Lemma 24 applied with $\hat{u} = u$ and Assumption 2 (i), we have for almost every $x \in S_j(u)$

$$|\nabla u|^2(x) = |\nabla V|^2(x) + |\nabla v|^2(x) + O(d^2(v, P_0)) = |\nabla V|^2(x) + |\nabla v|^2(x).$$

Finally, apply Lemma 24 with $\hat{u} = u_{t\eta}$ implies to obtain for almost every $x \in S_j(u)$,

$$|\nabla u_{t\eta}|^2(x) = |\nabla V|^2(x) + |\nabla v_{t\eta}|^2(x) + O(d^2(v_{t\eta}(x), P_0)) = |\nabla V|^2(x) + |\nabla v_{t\eta}|^2(x) + O(t^2).$$
Combining the above two equations, we obtain
\[|\nabla u_{t\eta}|^2(x) - |\nabla u|^2(x) = |\nabla v_{t\eta}|^2(x) - |\nabla v|^2(x) + O(t^2), \forall x \in S_j(u). \]

Since \(S_j(u)\) is of full measure in \(S(u)\) by Assumption 2 (ii), this implies the assertion. Q.E.D.

Remark 31 We are interested in the quantity
\[\int_{B_\sigma(x_0)} \left(|\nabla u_{t\eta}|^2 - |\nabla u|^2 \right) - \left(|\nabla v_{t\eta}|^2 - |\nabla v|^2 \right) d\mu. \]

We write the above integral as the sum of two terms, the first being the integral over \(R(u) \cap B_\sigma(x_0)\) and the second being integral over \(S(u) \cap B_\sigma(x_0)\). Assumption 3 implies that when we estimate the first term, we need only to estimate the integrand in the subset \(R(u, w)\) of \(R(u) \cap B_\sigma(x_0)\). Lemma 30 implies that the second term is \(O(t^2)\).

The following is an estimate of the first variation for target variations.

Proposition 32 Let metrics \(G\) and \(h\) defined on \(\mathbb{R}^j \times Y_2^{k-j}\) and \(Y_2^{k-j}\) and \(u = (V, v) : B_{\sigma_\ast}(x_\ast) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)\) be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. If \(w : B_{r_0}(x_0) \to (Y_2^{k-j}, d_h)\) is a harmonic map and \(v_{t\eta}, u_{t\eta}\) are as in (32), (33) respectively, then there exists \(\sigma_0 > 0\) and \(C > 0\) such that
\[
\limsup_{t \to 0^+} \frac{E^v_{x_\eta}(\sigma) - E^{u_{t\eta}}_{x_\eta}(\sigma)}{t} \leq C \int_{B_\sigma(x_0)} \eta d(v, P_0)d(v, w)d\mu
\]
for \(x_\eta \in S_j(u) \cap B_{2\sigma}(x_\ast)\) and \(\sigma \in (0, \sigma_0]\). Furthermore, \(C\) and \(\sigma_0\) depend only on the constant in the estimates (24)-(28) for the target metric \(G\), the domain metric \(g\), the Lipschitz constants of \(u\) and \(w\) in \(B_{\sigma_\ast}(x_0)\) and \(\eta\).

Proof. Let \(x \in B_{\sigma}(x_0) \cap \overline{R}(u, w)\). Thus, there exists a DM \(F\) that contains \(v_\eta(B_\delta(x))\) and \(M = \mathbb{R}^j \times F\) that contains \(u_\eta(B_\delta(x))\). Using coordinates of \(\mathbb{R}^j \times F\), we have for \(x \in B_{\sigma}(x_0) \cap \overline{R}(u, w)\) and \(t_0 > 0, \tau > 0\) small
\[
|\nabla u(t_{0+\tau})|^2 - |\nabla u_{t_0}|^2 \\
= G_{11}(V, v_{t_{0+\tau}}) \nabla V \cdot \nabla V - G_{11}(V, v_{t_0}) \nabla V \cdot \nabla V \\
+ 2(G_{12}(V, v_{t_{0+\tau}}) \nabla V \cdot \nabla u_{t_{0+\tau}} - G_{12}(V, v_{t_0}) \nabla V \cdot \nabla u_{t_0}) \\
+ G_{22}(V, v_{t_{0+\tau}}) \nabla v_{t_{0+\tau}} \cdot \nabla u_{t_{0+\tau}} - G_{22}(V, v_{t_0}) \nabla v_{t_0} \cdot \nabla u_{t_0}.
\]
Dividing by τ, taking the limit as $\tau \to 0$, subtracting $\frac{d}{dt} \bigg|_{t=t_0} |\nabla v_{t\eta}|^2$ from both sides and noting that $\mathcal{R}(u, w)$ is of full measure in $\mathcal{R}(u)$ by Assumption 3, we conclude that at almost every $x \in B_\sigma(x_0) \cap \mathcal{R}(u)$ and for $t_0 > 0$ small

$$
\frac{d}{dt} \bigg|_{t=t_0} \left(|\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 \right)
= \frac{d}{dt} \bigg|_{t=t_0} G_{11}(V, v_{t\eta}) \nabla V \cdot \nabla V + 2 \frac{d}{dt} \bigg|_{t=t_0} G_{12}(V, v_{t\eta}) \nabla V \cdot \nabla v_{t\eta}
+ \frac{d}{dt} \bigg|_{t=t_0} \Box(V, v_{t\eta}) \nabla v_{t\eta} \cdot \nabla v_{t\eta}
$$

(37)

where

$$\Box(V, v) = G_{22}(V, v) - h(v).$$

Since u is harmonic, we have

$$\frac{d}{dt} \bigg|_{t=0^+} \int_{B_\alpha(x_0)} |\nabla u_{t\eta}|^2 d\mu \geq 0$$

(38)

where for a function $f(t)$ defined for $t > 0$ small we set

$$\frac{d}{dt} \bigg|_{t=0^+} f := \liminf_{t \to 0^+} \frac{f(t) - f(0)}{t}.$$

By Lemma 30,

$$\int_{S(u) \cap B_\alpha(x)} |\nabla u_{t\eta}|^2 - |\nabla u|^2 d\mu = \int_{S(u) \cap B_\alpha(x)} |\nabla v_{t\eta}|^2 - |\nabla v|^2 d\mu + O(t^2),$$

and hence

$$\frac{d}{dt} \bigg|_{t=0^+} \int_{S(u) \cap B_\alpha(x)} |\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 d\mu = 0.$$

(39)

Furthermore,

Claim 33 For t_0 small and $C > 0$ a constant that depends only on the metric estimates (24)-(28), the Lipschitz constant of u and w and η,

$$\left| \frac{d}{dt} \bigg|_{t=t_0} \left(|\nabla v_{t\eta}|^2 - |\nabla u_{t\eta}|^2 \right) \right| \leq C, \quad \forall x \in \mathcal{R}(u, w) \cap B_\sigma(x_0).$$
Proof of Claim. For \(x \in \mathcal{R}(u, w) \), we use a DM to compute

\[
\frac{d}{dt} G_{11}(V, v_{\tau}) \nabla \cdot \nabla V = g^{\alpha \beta} \partial_{v^i} G_{IJ}(V, v_{\tau}) \frac{dv^i_{\tau}}{dt} \frac{\partial V^I}{\partial x^\alpha} \frac{\partial V^J}{\partial x^\beta}, \tag{40}
\]

\[
\frac{d}{dt} G_{12}(V, v_{\tau}) \nabla \cdot \nabla v_{\tau} = g^{\alpha \beta} \partial_{v^i} G_{ij}(V, v_{\tau}) \frac{dv^i_{\tau}}{dt} \frac{\partial V^i}{\partial x^\alpha} \frac{\partial V^j}{\partial x^\beta} + g^{\alpha \beta} G_{ij}(V, v_{\tau}) \frac{dv^i_{\tau}}{dt} \frac{\partial v_j^i}{\partial x^\alpha}, \tag{41}
\]

\[
\frac{d}{dt} (V, v_{\tau}) \nabla v_{\tau} \cdot \nabla v_{\tau} = g^{\alpha \beta} \partial_{v^i} \nabla_{ij}(V, v_{\tau}) \frac{dv^i_{\tau}}{dt} \frac{\partial V^i}{\partial x^\alpha} \frac{\partial V^j}{\partial x^\beta} + 2 g^{\alpha \beta} \nabla_{ij}(V, v_{\tau}) \frac{dv^i_{\tau}}{dt} \frac{\partial v_j^i}{\partial x^\alpha} \frac{\partial t}{\partial x^\beta}. \tag{42}
\]

By the Lipschitz estimate of \(u \) and (27) of Assumption 1,

\[
\left| H(V)^{\frac{1}{2}} \frac{\partial V^I}{\partial x^\alpha} \right|, \left| h(v)^{\frac{1}{2}} \frac{\partial v^i}{\partial x^\alpha} \right| \leq C. \tag{43}
\]

Since \(\tau \mapsto v_{\tau}(x) \) is a constant speed geodesic, we also have

\[
\left| h(v_{\tau})^{\frac{1}{2}} \frac{dv^i_{\tau}}{dt} \right| \leq \eta d(v, w) \leq C. \tag{44}
\]

Additionally, since

\[
h \nabla_{\frac{d}{dt}} \frac{\partial v^i_{\tau}}{\partial x^\beta} = \left(\frac{d}{dt} \frac{\partial v^i_{\tau}}{\partial x^\beta} + \frac{\partial v^i_{\tau}}{\partial x^\beta} \frac{\partial v^k_{\tau}}{\partial t} \Gamma^i_{jk} \right) \frac{\partial}{\partial v^i} \tag{45}
\]

Lemma 28, (27) and the Christoffel symbols estimates (29) imply

\[
d(v, P_0) \left| h_{ij}^{\frac{1}{2}} \frac{d}{dt} \frac{\partial v^i_{\tau}}{\partial x^\beta} \right| \leq C.
\]

Thus, the metric estimates (24), (25) along with (43), (44) and (45) imply that the absolute value of the right hand side of (40), (41) and (42) is uniformly bounded above. Combined with (37), this implies the assertion of the claim. Q.E.D.
We now continue with the proof of the Proposition. Since $R(u, w)$ is of full measure in $\mathcal{R}(u) \cap B_\sigma(x_0)$ by Assumption 3, this immediately implies

$$
\int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} \left(|\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 \right) d\mu \\
= \frac{d}{dt} \bigg|_{t=0+} \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} |\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 d\mu.
$$

(46)

Therefore we conclude

$$
- \frac{d}{dt} \bigg|_{t=0+} \int_{B_\sigma(x_0)} |\nabla v_{t\eta}|^2 d\mu \\
\leq \frac{d}{dt} \bigg|_{t=0+} \int_{B_\sigma(x_0)} |\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 d\mu \quad \text{(by (38))} \\
= \frac{d}{dt} \bigg|_{t=0+} \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} |\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 d\mu \quad \text{(by (39))} \\
= \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} \left(|\nabla u_{t\eta}|^2 - |\nabla v_{t\eta}|^2 \right) d\mu \quad \text{(by (46))} \\
= \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} G_{11}(V, v_{t\eta}) \nabla V \cdot \nabla V d\mu \\
+ \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} G_{12}(V, v_{t\eta}) \nabla V \cdot \nabla v_{t\eta} d\mu \\
+ \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} \Box(V, v_{t\eta}) \nabla v_{t\eta} \cdot \nabla v_{t\eta} d\mu \quad \text{(by (37))} \\
=: (I) + (II) + (III).
$$

(47)

Thus, it suffices to prove the appropriate bounds for (I), (II) and (III).

First, the metric derivative estimates (25) along with (40), (43) and (44) imply

$$
(I) \quad := \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} G_{11}(V, v_{t\eta}) \nabla V \cdot \nabla V d\mu \\
= \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0+} G_{11}(V, v) \frac{dv_{t\eta}^i}{dt} \frac{\partial V^j}{\partial x^\alpha} \frac{\partial V^i}{\partial x^\beta} d\mu \\
\leq C \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \eta d(v, P_0) d(v, w) d\mu.
$$

(48)
Next, by (41), we can write

\[(II) := \int_{\mathcal{R} \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{I2}(V, v_{\eta}) \nabla V \cdot \nabla v_{\eta} d\mu \]

\[= \int_{\mathcal{R} \cap B_\sigma(x_0)} g^{\alpha\beta} \frac{\partial}{\partial v^i} G_{Ij}(V, v) \frac{dv_{\eta}^i}{dt} \bigg|_{t=0} \frac{\partial V^I}{\partial x^\alpha} \frac{\partial v^j}{\partial x^\beta} d\mu \]

\[+ \int_{\mathcal{R} \cap B_\sigma(x_0)} g^{\alpha\beta} G_{Ij}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{\eta}^j}{\partial x^\beta} d\mu \]

\[=: (II)_1 + (II)_2. \tag{49} \]

As in (I),

\[(II)_1 := \int_{\mathcal{R} \cap B_\sigma(x_0)} g^{\alpha\beta} \frac{\partial}{\partial v^i} G_{Ij}(V, v) \frac{dv_{\eta}^i}{dt} \bigg|_{t=0} \frac{\partial V^I}{\partial x^\alpha} \frac{\partial v^j}{\partial x^\beta} d\mu \]

\[\leq C \int_{\mathcal{R} \cap B_\sigma(x_0)} \eta d(v, P_0) d(v, w) d\mu. \tag{50} \]

Before we proceed to (II)$_2$, we will show

\[\exists \epsilon_j \to 0 \text{ such that } \epsilon_j \mathcal{H}^{n-1}(\partial A_\epsilon^+ \cap B_\sigma(x_0)) \to 0 \tag{51} \]

where

\[A_\epsilon^+ = \{ x \in B_\sigma(x_0) : d(v, P_0) > \epsilon \} .\]

Indeed, if (51) is not true, then \(\epsilon \mathcal{H}^{n-1}(\partial A_\epsilon^+ \cap B_\sigma(x_0)) \geq \delta > 0 \) for \(\epsilon < \epsilon_0\).

This in turn implies

\[\int_0^{\epsilon_0} \mathcal{H}^{n-1}(\partial A_\epsilon^+ \cap B_\sigma(x_0)) d\epsilon \geq \delta \int_0^{\epsilon_0} \frac{1}{\epsilon} d\epsilon = \infty. \]

On the other hand, the co-area formula and the fact that \(d(v, P_0)\) is Lipschitz imply that

\[\int_0^{\infty} \mathcal{H}^{n-1}(\partial A_\epsilon^+ \cap B_\sigma(x_0)) d\epsilon = \int_{A_0^+} |\nabla d(v, P_0)| d\mu < \infty. \]

This is a contradiction and this proves (51).

Let \(x \in (B_\sigma(x_0) \setminus A_\epsilon^+) \cap \mathcal{R}(u, w)\). Using the metric estimate (24), we have at \(x\)

\[|G_{Ij}(V, v)| \leq Cd^2(v, P_0) H(V) \frac{1}{2} \mathcal{H}^{\frac{1}{2}} \mathcal{H}^{\frac{1}{2}}. \]
Since $R(u, w)$ is of full measure in $R(u)$ by Assumption 3, together with (43), (45) and the fact that $d(v, P_0) \leq \epsilon_j$ in $(R(u) \cap B_\sigma(x_0)) \setminus A_{\epsilon_j}$ implies

$$
\int_{(R(u) \cap B_\sigma(x_0)) \setminus A_{\epsilon_j}} g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{in}^j}{\partial x^\beta} \, d\mu = O(\epsilon_j),
$$

and hence

$$(II)_2 := \int_{R(u) \cap B_\sigma(x_0)} g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{in}^j}{\partial x^\beta} \, d\mu = \int_{A_{\epsilon_j}} g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{in}^j}{\partial x^\beta} \, d\mu + O(\epsilon_j).$$

We now apply integration by parts for the integral over A_{ϵ_j} above. In order to do so, let $\varrho > 0$. By [GS] Theorem 6.4, $\dim_H(S(w)) \leq n - 2$. Combined with Assumption 2 (ii), we have that $\dim_H(S(u) \setminus S_j(u) \cup S(w)) \leq n - 2$. Thus, there exists a cover $\{B_{r_i}(x_i) : i = 1, 2, \ldots \}$ of the set $(S(u) \setminus S_j(u) \cup S(w)) \cap A_{\epsilon_j}$ such that $\sum_{i=1}^{\infty} r_i^{n-1} < \varrho$. Let φ_i be a Lipschitz cut-off function which is zero in $\bigcup_{i=1}^{\infty} B_{r_i}(x_i)$ and identically one in $B_{\sigma}(x_0) \setminus \bigcup_{i=1}^{\infty} B_{2r_i}(x_i)$ with $|\nabla \varphi_i| \leq 2r_i^{-1}$ in $B_{r_i}(x_i)$. Thus, with $\varphi_\varrho = \Pi_\varrho^\infty \varphi_i$, we have

$$
\int_{A_{\epsilon_j}} g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{in}^j}{\partial x^\beta} \, d\mu
$$

$$
= \lim_{\varrho \to 0} \int_{A_{\epsilon_j}} \varphi_\varrho g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \bigg|_{t=0} \frac{\partial v_{in}^j}{\partial x^\beta} \, d\mu
$$

$$
= \lim_{\varrho \to 0} \left[-\int_{A_{\epsilon_j}} \varphi_\varrho \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{g} g^{\alpha \beta} \frac{\partial V^I}{\partial x^\alpha} G_{I_j}(V, v) \frac{dv_{in}^j}{dt} \right) \bigg|_{t=0} \, d\mu - \int_{A_{\epsilon_j}} \varphi_\varrho g^{\alpha \beta} \frac{\partial}{\partial x^\beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv_{in}^j}{dt} \bigg|_{t=0} \, d\mu - \int_{A_{\epsilon_j}} g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{\partial \varphi_\varrho}{\partial x^\beta} \frac{dv_{in}^j}{dt} \bigg|_{t=0} \, d\mu + \int_{A_{\epsilon_j}} \varphi_\varrho g^{\alpha \beta} G_{I_j}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv_{in}^j}{dt} \bigg|_{t=0} \left(\bar{n} \cdot \frac{\partial}{\partial x^\beta} \right) \, d\Sigma \right]
$$

$$
= \lim_{\varrho \to 0} [(II)_{21} + (II)_{22} + (II)_{23} + (II)_{24}].
$$

(53)
As a component function of a harmonic map u, V^I satisfies the equation
\[
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{g} g^{\alpha\beta} \frac{\partial V^I}{\partial x^\alpha} \right) \frac{\partial}{\partial V^I} = -g^{\alpha\beta} \left(\Gamma^J_{JK}(V,v) \frac{\partial V^J}{\partial x^\alpha} + \Gamma^I_{Hi}(V,v) \frac{\partial V^J}{\partial x^\alpha} \frac{\partial v^i}{\partial x^\beta} + \Gamma^I_{ij}(V,v) \frac{\partial v^i}{\partial x^\alpha} \frac{\partial v^j}{\partial x^\beta} \right) \frac{\partial}{\partial V^I}
\]
in a neighborhood of a regular point $x \in \mathcal{A}_+^\ast \cap \mathcal{R}(u)$. By the Christoffel symbols estimates (29), (30) and the Lipschitz estimates (43), we obtain
\[
\left| \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{g} g^{\alpha\beta} \frac{\partial V^I}{\partial x^\alpha} \right) \right| \leq C.
\]
(54)
Thus, the metric estimates (24) and (44) imply
\[
(II)_{21} := - \int_{A^+_I} \varphi e \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{g} g^{\alpha\beta} \frac{\partial V^I}{\partial x^\alpha} \right) G_{IJ}(V,v) \frac{dv^J_{tq}}{dt} \bigg|_{t=0} \, d\mu
\leq C \int_{B_{r_0}(x_0)} \eta d^2(v,P_0) d(v,w) d\mu
\leq C \int_{B_{r_0}(x_0)} \eta d(v,P_0) d(v,w) d\mu.
\]
(55)
By the metric derivative estimates (25) and the Lipschitz estimates (43) we obtain
\[
\left| \frac{\partial}{\partial x^\beta} G_{IJ}(V,v) \right| = \left| \frac{\partial}{\partial V^J} G_{IJ}(V,v) \frac{\partial V^J}{\partial x^\beta} + \frac{\partial}{\partial v^k} G_{IJ}(V,v) \frac{\partial v^k}{\partial x^\beta} \right| \leq C d(v,P_0) H(V) \frac{1}{H} h(v) \frac{1}{H}.
\]
(56)
Combined with (43) and (44), this implies
\[
(II)_{22} := - \int_{A^+_I} \varphi e g^{\alpha\beta} \frac{\partial}{\partial x^\beta} G_{IJ}(V,v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv^J_{tq}}{dt} \bigg|_{t=0} \, d\mu
\leq C \int_{B_{r_0}(x_0)} \eta d(v,P_0) d(v,w) d\mu.
\]
(57)
By the properties of the set of cut-off functions $\{\varphi\}$, we have
\[
(II)_{23} := - \int_{A^+_I} g^{\alpha\beta} G_{IJ}(V,v) \frac{\partial V^I}{\partial x^\alpha} \frac{\partial \varphi_{tq} \frac{dv^J_{tq}}{dt} \bigg|_{t=0} \, d\mu
\]
≤ C \sum_{l=1}^{L} \int_{B_{r_l}(x_l)} |\nabla \varphi_l| d\mu \\
≤ C \sum_{l=1}^{L} \frac{1}{r_l} \text{Vol}(B_{r_l}(x_l)) \\
≤ C \sum_{l=1}^{L} r_l^{n-1} = O(\varrho). \quad (58)

Furthermore, \(|G_t(V, v)| ≤ C\epsilon^2 h(V)^{\frac{1}{2}} h(v)^{\frac{1}{2}}|\partial A_{\epsilon_j}^+|\) by the metric estimates (24), and hence
\[
\left| \int_{\partial A_{\epsilon_j}^+ \cap B_{\sigma}(x_0)} \varphi \eta g^{\alpha\beta} G_{IJ}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv^j}{dt} \bigg|_{t=0} \left(\vec{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma \right| \\
≤ C\epsilon^2 h^{n-1}(\partial A_{\epsilon_j}^+ \cap B_{\sigma}(x_0)) = O(\epsilon_j)
\]
where we have used (51) for the last equality. Lastly, the fact that \(\eta\) has compact support in \(B_\sigma(x_0)\) implies \(\frac{dv^j}{dt} \bigg|_{t=0} = 0\) on \(\partial B_\sigma(x_0)\). Thus,
\[
\int_{A_{\epsilon_j}^+ \cap \partial B_\sigma(x_0)} \varphi \eta g^{\alpha\beta} G_{IJ}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv^j}{dt} \bigg|_{t=0} \left(\vec{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma = 0.
\]
The above two inequalities imply
\[
(II)_{24} := \int_{\partial A_{\epsilon_j}^+} \varphi \eta g^{\alpha\beta} G_{IJ}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv^j}{dt} \bigg|_{t=0} \left(\vec{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma \\
= \int_{A_{\epsilon_j}^+ \cap \partial B_\sigma(x_0)} + \int_{\partial A_{\epsilon_j}^+ \cap B_{\sigma}(x_0)} \varphi \eta g^{\alpha\beta} G_{IJ}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{dv^j}{dt} \bigg|_{t=0} \left(\vec{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma \\
= O(\epsilon_j). \quad (59)
\]
Combining (52), (53), (55), (57), (58), (59), and letting \(\epsilon_j, \varrho \to 0\), we obtain
\[
(II)_{2} ≤ C \int_{B_{\sigma}(x_0)} \eta d(v, P_0) d(v, w) d\mu. \quad (60)
\]
Combining (49), (50), (60), we have
\[
(II) := \int_{R(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} \mathbf{G}_{12}(V, v_{\eta}) \nabla V \cdot \nabla v_{\eta} d\mu \\
≤ C \int_{B_{\sigma}(x_0)} \eta d(v, P_0) d(v, w) d\mu. \quad (61)
\]
39
Finally, by (42), we can write

\[
(III) = \int_{R(u) \cap B_{\sigma}(x_0)} \left. \frac{d}{dt} \right|_{t=0^+} \Box(V, v_{t\eta}) \nabla v_{t\eta} \cdot \nabla v_{t\eta} d\mu \\
= \int_{R(u) \cap B_{\sigma}(x_0)} g^{\alpha\beta} \frac{\partial}{\partial v^i} \Box_{ij}(V, v) \frac{dv^i_{t\eta}}{dt} \bigg|_{t=0} \frac{\partial v^j_{t\eta}}{\partial x^\alpha} d\mu \\
+ \int_{R(u) \cap B_{\sigma}(x_0)} g^{\alpha\beta} \Box_{ij}(V, v) \frac{\partial v^j_{t\eta}}{\partial x^\alpha} \frac{\partial v^i_{t\eta}}{\partial x^\beta} d\mu \\
=: (III)_1 + (III)_2.
\]

We derive an estimate for \((III)_1\) in exactly the same way as in \((I)\) noting that similarity of the the metric derivative estimatess (25) for \(G_{11}(V, v)\) and \(\Box(V, v)\). We obtain

\[
(III)_1 := \int_{R(u) \cap B_{\sigma}(x_0)} g^{\alpha\beta} \frac{\partial}{\partial v^i} \Box_{ij}(V, v) \frac{dv^i_{t\eta}}{dt} \bigg|_{t=0} \frac{\partial v^j_{t\eta}}{\partial x^\alpha} d\mu \\
\leq C \int_{R(u) \cap B_{\sigma}(x_0)} \eta d(v, P_0) d(v, w) d\mu.
\]

To estimate \((III)_2\), we write similarly to \((II)_2\)

\[
(III)_2 = \int_{A^+_j} g^{\alpha\beta} \Box_{ij}(V, v) \frac{\partial v^i}{\partial x^\alpha} \frac{dv^i_{t\eta}}{dt} \bigg|_{t=0} \frac{\partial v^j_{t\eta}}{\partial x^\beta} + O(\epsilon_j)
\]

\[
= \lim_{\epsilon \to 0} \int_{A^+_j} \varphi \varphi \Box_{ij}(V, v) \frac{\partial v^i}{\partial x^\alpha} \frac{dv^i_{t\eta}}{dt} \bigg|_{t=0} \frac{\partial v^j_{t\eta}}{\partial x^\beta} + O(\epsilon_j)
\]

\[
= \lim_{\epsilon \to 0} \left[- \int_{A^+_j} \varphi \varphi \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} (\sqrt{g} g^{\alpha\beta} \frac{\partial v^i}{\partial x^\alpha}) \Box_{ij}(V, v) \frac{dv^i_{t\eta}}{dt} \bigg|_{t=0} d\mu \\
- \int_{A^+_j} \varphi \varphi \frac{\partial}{\partial x^\beta} \Box_{ij}(V, v) \frac{\partial v^i}{\partial x^\alpha} \frac{dv^j_{t\eta}}{dt} \bigg|_{t=0} d\mu \\
- \int_{A^+_j} \varphi \varphi \Box_{ij}(V, v) \frac{\partial v^i}{\partial x^\alpha} \frac{\partial \varphi \varphi}{\partial x^\beta} \frac{dv^j_{t\eta}}{dt} \bigg|_{t=0} d\mu \\
+ \int_{\partial A^+_j} \varphi \varphi \frac{\partial}{\partial x^\beta} \Box_{ij}(V, v) \frac{\partial v^i}{\partial x^\alpha} \frac{dv^j_{t\eta}}{dt} \bigg|_{t=0} \left(\bar{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma \right] + O(\epsilon_j)
\]

\[
=: \lim_{\epsilon \to 0} [(III)_{21} + (III)_{22} + (III)_{23} + (III)_{24}] + O(\epsilon_j).
\]
We obtain the estimates for \((III)_22\), \((III)_23\) and \((III)_24\) in exactly the same way as for \((II)_22\), \((II)_23\) and \((II)_24\) after noting the similarity of the the metric estimates \((24)\) and \((25)\) for \(G_{12}(V,v)\) and \(\Box(V,v) = G_{22}(V,v) - h(v)\). Furthermore, we obtain the estimates for \((III)_21\) analogously to \((II)_21\). Indeed, as a component function of a harmonic map \(u, v^i\) satisfies the equation

\[
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{gg^{\alpha \beta}} \frac{\partial v^i}{\partial x^\alpha} \right) \frac{\partial}{\partial v^i} = -g^{\alpha \beta} \left(\Gamma^i_{jk}(V,v) \frac{\partial V^j}{\partial x^\alpha} + \Gamma^i_{ji}(V,v) \frac{\partial V^j}{\partial x^\beta} + \Gamma^i_{jk}(V,v) \frac{\partial v^j}{\partial x^\alpha} \frac{\partial v^k}{\partial x^\beta} \right) \frac{\partial}{\partial v^i}
\]

in a neighborhood of a regular point \(x \in \mathbb{A}^+ \cap \mathcal{R}(u)\). By the Christoffel symbols estimates \((29)\), \((30)\) and the Lipschitz estimates \((43)\), we obtain

\[
d(v,P_0) \left| \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\beta} \left(\sqrt{gg^{\alpha \beta}} \frac{\partial v^i}{\partial x^\alpha} \right) \frac{1}{2} \right| \leq C.
\]

Hence,

\[
(III) := \int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0^+} \Box(V,v) \nabla v^i \cdot \nabla v^i \, d\mu \leq C \int_{B_\sigma(x_0)} \eta d(v,P_0)d(v,w) \, d\mu.
\]

Thus, the assertion of the lemma follows from \((47)\), \((48)\), \((61)\) and \((65)\).

Q.E.D.

With \(w\) equal to the constant map \(P_0\) in Proposition 32, we obtain

Corollary 34 Let metrics \(G\) and \(h\) defined on \(\mathbb{R}^j \times Y_2^{k-j}\) and \(Y_2^{k-j}\) and \(u = (V,v) : B_{\sigma}(x_*) \to (\mathbb{R}^j \times Y_2^{k-j},d_G)\) be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. There exists \(\sigma_0 > 0\) and \(C > 0\) such that

\[
-C \int_{B_{\sigma}(x_0)} \eta d^2(v,P_0) d\mu + 2 \int_{B_{\sigma}(x_0)} \eta |\nabla v|^2 d\mu \leq - \int_{B_{\sigma}(x_0)} \nabla \eta \cdot \nabla d^2(v,P_0) \, d\mu
\]

for \(x_0 \in \mathcal{S}(u) \cap B_{2\sigma}(x_*)\), \(\sigma \in (0,\sigma_0]\) and \(\eta \in C^\infty_c(B_{\sigma}(x_0))\) with \(0 \leq \eta \leq 1\). Furthermore, \(C\) and \(\sigma_0\) depend only on the constant in the estimates \((24)-(28)\) for the target metric \(G\), the domain metric \(g\) and the Lipschitz constants of \(u\) and \(w\) in \(B_{\sigma}(x_0)\).
Proof. From [GS] Section 2,

\[E_{x_0}^{v_{\eta}}(\sigma) \leq \int_{B_{\sigma}(x_0)} (1 - t\eta)^2 |\nabla v|^2 d\mu - t \int_{B_{\sigma}(x_0)} \nabla \eta \cdot \nabla d^2(v(x), P_0) d\mu + 0(t^2). \]

Hence rearranging terms, dividing by \(t \) and letting \(t \to 0 \), we obtain

\[\frac{2}{\int_{B_{\sigma}(x_0)} \eta |\nabla v|^2 d\mu} \leq - \int_{B_{\sigma}(x_0)} \nabla \eta \cdot \nabla d^2(v(x), P_0) d\mu + \liminf_{t \to 0^+} \frac{E_v^\sigma(\sigma) - E_{v_{\eta}}^\sigma(\sigma)}{t}. \]

Proposition 32 with \(w = P_0 \) implies

\[\liminf_{t \to 0^+} \frac{E_v^\sigma(\sigma) - E_{v_{\eta}}^\sigma(\sigma)}{t} \leq C \int_{B_{\sigma}(x_0)} \eta d^2(v, P_0) d\mu. \]

Combining the above two, we obtain the assertion of the Proposition. Q.E.D.

The following is the analogue of the target variation formula in [GS].

Proposition 35 Let metrics \(G \) and \(h \) defined on \(\mathbb{R}^j \times Y_2^{k-j} \) and \(Y_2^{k-j} \) and \(u = (V, v) : B_{\sigma}(x_*) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G) \) be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. There exists \(C > 0 \) such that for \(\sigma \in (0, \sigma_0) \),

\[2E_v^\sigma(\sigma) \leq \int_{\partial B_{\sigma}(x_0)} \frac{\partial}{\partial r} d^2(v, P_0) d\sigma + C \int_{B_{\sigma}(x_0)} d^2(v, P_0) d\mu. \]

Furthermore, \(C \) and \(\sigma_0 \) depends only on the constant in the estimates (24)-(28) for the target metric \(G \), the domain metric \(g \) and the Lipschitz constants of \(u \) and \(w \) in \(B_{\sigma_0}(x_0) \).

Proof. Follows immediately from letting \(\eta \) approximate the characteristic function of \(B_{\sigma}(x_0) \) in Corollary 34. Q.E.D.

Remark 36 When (67) is compared with [GS] inequality (2.2), we note the additional error term of \(C \int_{B_{\sigma}(x_0)} d^2(v, P_0) d\mu \). Furthermore, Corollary 34 says that the function \(d^2(v, P_0) \) is almost subharmonic up to the same error term.
7 Lower Order Bound

The main goal of this section is to prove the following Poincare type inequality.

Proposition 37 Let metrics G and h defined on $\mathbb{R}^j \times Y_2^{k-j}$ and Y_2^{k-j} and $u = (V, v) : B_{\sigma}(x_\star) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. Then for any $\epsilon_0 > 0$, there exists $R_0 > 0$ such that

$$1 - \epsilon_0 \leq \frac{\sigma E^v_{x_i}(\sigma)}{I^v_x(\sigma)}, \forall x_i \in \mathcal{S}_j(u) \cap B_{2R}(x_\star), \sigma \in (0, R_0). \quad (68)$$

Before we proceed with the proof of Proposition 37, we need some preliminary material. Let $u = (V, v) : B_{\sigma}(0) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ as in Proposition 37, $x \in \mathcal{S}_j(u)$ and $\sigma > 0$ sufficiently small such that $B_\sigma(x) \subset B_{2R}(x_\star)$. Note that $x \in \mathcal{S}_j(u)$ implies $v(x) = P_0$ (cf. Assumption 2 (i)). Use normal coordinates to identify the σ-ball about x with $(B_{\sigma}(0), g_x)$ where $B_{\sigma}(0) \subset \mathbb{R}^n$.

We define the restriction maps $x, \sigma v : (B_{\sigma}(0), g_x) \to Y_2^{k-j}, \sigma, x v = v|_{B_{\sigma}(0)}$, the harmonic maps $x, \sigma w : (B_{\sigma}(0), g_x) \to (Y_2^{k-j}, d_{\sigma})$ with $\sigma, x w|_{\partial B_{\sigma}(0)} = \sigma, x v|_{\partial B_{\sigma}(0)}$

and set

$$\nu_{\sigma, x} = \left(\frac{I^x_{0,\sigma} v(\sigma)}{\sigma^{n-1}} \right)^{1/2}. \quad (69)$$

Let $g_{\sigma, x}(y) = g_x(\sigma y)$ be the rescaled metric on $B_1(0)$ and define the rescaled maps $v_{\sigma, x}, w_{\sigma, x} : (B_1(0), g_{\sigma, x}) \to (Y_2^{k-j}, d)$

by setting

$$v_{\sigma, x}(y) = \nu_{\sigma, x}^{-1} \sigma, x v(\sigma y) \quad \text{and} \quad w_{\sigma, x}(y) = \nu_{\sigma, x}^{-1} \sigma, x w(\sigma y).$$

We will denote by $d\mu_{\sigma, x}, d\Sigma_{\sigma, x}$ the volume forms on $B_1(0)$, $\partial B_\sigma(0)$ respectively with respect to the metric $g_{\sigma, x}$. The normalization by $\nu_{\sigma, x}$ implies that

$I^{v_{\sigma, x}}_0(1) = 1.$

43
Definition 38 The maps \(\{v_{\sigma,x}\}_{\sigma > 0} \) are called the blow-up maps of \(v \) at \(x \) and the maps \(\{w_{\sigma,x}\} \) are called the approximating harmonic blow-up maps of \(v \) at \(x \). We will drop the subscript \(x \) from \(v_{\sigma,x}, w_{\sigma,x}, \sigma_x v, \sigma_x w, g_{\sigma,x}, d\mu_{\sigma,x} \) and \(d\Sigma_{\sigma,x} \) above when it is clear at which point we are taking the blow ups. Note that in this notation \(v_{\sigma} \) may be different from the second component \(\pi_2 \circ u_{\sigma} \) of \(u_{\sigma} \) as the blow-up factors \(\mu, \nu \) for \(u, v \) respectively may be different. Hopefully, this will not cause any confusion to the reader since it will be clear from the context which one we are using. Furthermore, we will drop the subscript \(x \) from \(E_x \) and \(I_x \) when the point is understood.

Lemma 39 Let \(u \) be as in Proposition 37 and \(v, w, v_{\sigma}, w_{\sigma} \) as in Definition 38. Then there exists a constant \(C > 0 \) depending only on the domain metric \(g \) such that

\[
\int_{B_\sigma(0)} d^2(v, \sigma w) d\mu \leq C \sigma^2 (E^v(\sigma) - E^w(\sigma)) \tag{70}
\]

\[
\int_{B_1(0)} d^2(v_\sigma, w_\sigma) d\mu_\sigma \leq C (E^{v_\sigma}(1) - E^{w_\sigma}(1)) \tag{71}
\]

\[
\int_{B_\sigma(0)} |\nabla d(v, \sigma w)|^2 d\mu \leq E^v(\sigma) - E^w(\sigma) \tag{72}
\]

\[
\int_{B_1(0)} |\nabla d(v_\sigma, w_\sigma)|^2 d\mu_\sigma \leq E^{v_\sigma}(1) - E^{w_\sigma}(1) \tag{73}
\]

\[
\int_{B_\sigma(0)} d^2(\sigma w, P_0) \ d\mu \leq C \sigma I^v(\sigma) \tag{74}
\]

\[
\int_{B_1(0)} d^2(w_\sigma, P_0) \ d\mu_\sigma \leq C \tag{75}
\]

\[
\int_{B_\sigma(0)} d^2(v, P_0) \ d\mu \leq C (\sigma I^v(\sigma) + \sigma^2 E^v(\sigma)) \tag{76}
\]

\[
\int_{B_1(0)} d^2(v_\sigma, P_0) \ d\mu_\sigma \leq C (1 + E^{v_\sigma}(1)). \tag{77}
\]

Proof. It will be sufficient to prove (70), (71), (72) and (73) since the other inequalities will then follow after a change of variables \(x = \sigma y \) and a multiplication by \(\nu_\sigma^{-2} \). Let \(\sigma w_{\frac{1}{2}} : B_\sigma \to (Y_2^{k-j}, d_h) \) be the map defined by
setting $\sigma w_{\frac{1}{2}}(x)$ to be the midpoint of the geodesic between $v(x)$ and $\sigma w(x)$. Then by (2.2iv) of [KS2], we have

$$2 E^{\sigma w_{\frac{1}{2}}}(\sigma) \leq E^{v}(\sigma) + E^{\sigma w}(\sigma) - \int_{B_\sigma(0)} |\nabla d(v, \sigma w)|^2 d\mu.$$

The harmonicity of σw implies $E^{\sigma w}(\sigma) \leq E^{\sigma w_{\frac{1}{2}}}(\sigma)$ which in turn implies (71). Let $C > 0$ be a generic constant depending only on the domain metric g. The Poincare inequality then implies that

$$\int_{B_\sigma(0)} d^2(v, \sigma w) d\mu \leq C \sigma^2 \int_{\partial B_\sigma(0)} |\nabla d(v, \sigma w)|^2 d\mu.$$

Combining the above two inequality, we obtain (70). Since σw is a harmonic map (cf. [GS], last formula on p. 195),

$$I^{\sigma w}(s) \leq e^{C \sigma^2} \frac{I^{\sigma w}(\sigma)}{\sigma^{n+1}} s^{n+1}, \text{ for } s \leq \sigma.$$

Integrating over $s \in (0, \sigma)$, there exists a constant $C > 0$ depending only on g such that

$$\int_{B_\sigma(0)} d^2(\sigma w, P_0) d\mu \leq C \sigma \int_{\partial B_\sigma(0)} d^2(\sigma w, P_0) d\Sigma = C \sigma I^v(\sigma)$$

which proves (72). The inequality (73) follows immediately from the triangle inequality and (70). Q.E.D.

Lemma 40 Let u be as in Proposition 37, v_σ, w_σ be as in Definition 38 and assume there exists $A > 0$ such that $E^{v_\sigma}(1) \leq A$. Then there exists a constant $C > 0$ such that

$$E^{v_\sigma}(1) - E^{w_\sigma}(1) \leq C \sigma^2.$$

Furthermore, C depends only on the constant in the estimates (24)-(28) for the target metric G, the domain metric g, the Lipschitz constant of u and A.

Proof. Let $\hat{u} = (V, \sigma w)$. By Lemma 24,

$$|\nabla v|^2 \leq |\nabla u|^2 - |\nabla V|^2 + Cd^2(v, P_0)$$

45
\[-|\nabla w|^2 \leq -|\nabla \hat{u}|^2 + |\nabla V|^2 + Cd^2(w, P_0), \]

and thus
\[
|\nabla v|^2 - |\nabla w|^2 \leq |\nabla u|^2 - |\nabla \hat{u}|^2 + Cd^2(v, P_0) + Cd^2(w, P_0). \tag{74}
\]

Integrating over \(B_\sigma(x_0) \), we obtain
\[
E_v(\sigma) - E_v(w) \leq E_u(\sigma) - E_u(w) + C \int_{B_\sigma(x_0)} d^2(v, P_0) + d^2(w, P_0) d\mu.
\]

Harmonicity of \(u \) and scaling immediately implies
\[
E_v^\sigma(1) - E_v^w(1) \leq C \sigma^2 \int_{B_1(0)} d^2(v_\sigma, P_0) + d^2(w_\sigma, P_0) d\mu_\sigma
\]
\[
\leq C \sigma^2 (1 + E_v^w(1)) \quad \text{(by Lemma 39)}
\]

where \(d\mu_\sigma \) is the volume form with respect to metric \(g_\sigma \). Since \(E_v^w(1) \leq A \), the proof is complete. Q.E.D.

The following states that \(d^2(v_\sigma, w_\sigma) \) is close to being a subharmonic function.

Lemma 41 Let \(u \) as in Proposition 37, \(x \in S_j(u) \cap B_{2\sigma}(x_\star) \), identify \(x = 0 \) via normal coordinates and let \(\sigma > 0 \) sufficiently small such that \(B_\sigma(0) \subset B_{2\sigma}(x_\star) \). For \(v_\sigma \) and \(g_\sigma \) as in Definition 38, assume there exists \(A > 0 \) such that \(E_v^\sigma(1) \leq A \). Then for \(\rho \in [\frac{3}{4}, 1] \), a harmonic map \(w : (B_\rho(0), g_\rho) \to Y_2^{k-j} \) with \(E_v(\rho) \leq A \) and \(\sigma_0 \in (0, 1) \), there exists a constant \(C > 0 \) such that if \(\eta \in C_c(B_{\rho \sigma_0}(0)) \), then
\[
-C \sigma^2 \int_{B_{\rho \sigma_0}(0)} \eta d(v_\sigma, P_0) d\mu_\sigma \leq - \int_{B_{\rho \sigma_0}(0)} \nabla \eta \cdot \nabla d^2(v_\sigma, w) d\mu_\sigma.
\]

Furthermore, \(C \) depends only on \(\sigma_0 \), the constant in the estimates (24)-(28) for the target metric \(G \), the domain metric \(g \), the Lipschitz constant of \(u \) and \(A \).

Proof. We apply Proposition 32 with \(w \) replaced by the harmonic map \(\hat{w} : B_{\rho \sigma}(0) \to Y_2^{k-j} \) defined by setting \(\hat{w}(y) = v_\sigma w(\frac{y}{\sigma}) \), \(\sigma_0 \) replaced by \(\rho \sigma \),
σ replaced by ρσσ and x₀ replaced by x. Thus, for a non-negative smooth function η ∈ \(C^∞(B_{ρσσ0}(x))\) with 0 ≤ η ≤ 1 and t sufficiently small,

\[
\limsup_{t \to 0^+} \frac{E^0_0(ρσσ0) - E^{utn}_0(ρσσ0)}{t} \leq C \int_{B_{ρσσ0}(x)} ηd(v, P_0)d(v, \hat{w})dμ \tag{75}
\]

where C > 0 depends only on σ₀, the constant in the estimates (24)-(28) for the target metric \(G\), the domain metric \(g\) and the Lipschitz constants of \(u\) and \(\hat{w}\) in \(B_{ρσσ0}(x)\). Using the fact that \(\hat{w}\) is energy minimizing, we obtain from [KS1] Lemma 2.4.2 that

\[
E^{utn}_0(ρσσ0) \leq E^0_0(ρσσ0) - t \int_{B_{ρσσ0}(x)} \nabla η \cdot \nabla d^2(v, \hat{w})dμ + o(t^2).
\]

Hence rearranging terms, dividing by \(t\) and letting \(t \to 0\), we obtain

\[
0 \leq -\int_{B_{ρσσ0}(x)} \nabla η \cdot \nabla d^2(v, \hat{w})dμ + \limsup_{t \to 0^+} \frac{E^0_0(ρσσ0) - E^{utn}_0(ρσσ0)}{t}.
\]

Combining this with (75), we obtain

\[
-C \int_{B_{ρσσ0}(x)} ηd(v, P_0)d(v, \hat{w})dμ \leq -\int_{B_{ρσσ0}(x)} \nabla η \cdot \nabla d^2(v, \hat{w})dμ.
\]

and since η is supported in \(B_{ρσσ0}(x)\)

\[
-C \int_{B_{ρσσ0}(x)} ηd(v, P_0)d(v, \hat{w})dμ \leq -\int_{B_{ρσσ0}(x)} \nabla η \cdot \nabla d^2(v, \hat{w})dμ. \tag{76}
\]

After the change of variables \(y = σζ\) and multiplication by \(ν_σ^{-2}\) we obtain inequality of the assertion. Finally, the monotonicity formula for the energy of the harmonic map \(w\) implies that for any \(y \in B_{ρσσ0}(0)\),

\[
|\nabla w|^2(y) \leq \frac{E^w_0(ρ - ρσσ0)}{(ρ - ρσσ0)^n} \leq \frac{E^w_0(ρ)}{(ρ - ρσσ0)^n} \leq \frac{E^w_0(ρ)}{(ρ - ρσσ0)^n} \leq \frac{A}{(ρ - ρσσ0)^n}.
\]

Thus, the Lipschitz constant of \(w\) is only dependent on \(A\) and \(σσ\). Furthermore since

\[
|\nabla \hat{w}|(x) = \frac{ν_σ}{σ}|\nabla w|(σx)
\]

\[
= \sqrt{\frac{I^ν(σ)}{σ^{n+1}}}|\nabla w|(σx)
\]

\[
≤ C|\nabla w|(σx) \quad \text{(by the Lipschitz bound of } u)\]

47
we obtain that the constant C in the statement of the lemma is only dependent on σ_0, the constant in the estimates (24)-(28) for the target metric G, the domain metric g, the Lipschitz constant of u and A as required. q.e.d.

Proposition 42 With u as in Proposition 37, let $x \in S_j(u) \cap B_{2\sigma}(x_*)$, identify $x = 0$ via normal coordinates and let $\sigma > 0$ sufficiently small such that $B_{\sigma}(0) \subset B_{2\sigma}(x_*)$. For v_σ, w_σ and g_σ as in Definition 38, assume there exists $A > 0$ such that $E^{v_\sigma}(1) \leq A$. Then given $R \in (0, 1)$ sufficiently small, there exists $C > 0$ depending only on the dimension n, the metric g of the domain, the constant in the estimates (24)-(28) for the target metric G, the Lipschitz constant of u, R and A such that

$$\sup_{B_R(0)} d^2(v_\sigma, w_\sigma) \leq C\sigma^2.$$

Proof. For $x \in B_R(0)$ and $s \in (0, \frac{1-R}{2})$, let w be a map as in Lemma 41 and let η approximate the characteristic function of $B_\rho(x)$ to obtain

$$-C\sigma^2 \int_{B_s(x)} d(v_\sigma, w) d(v_\sigma, P_0) d\mu_\sigma \leq \int_{\partial B_s(x)} \frac{\partial}{\partial s} d^2(v_\sigma, w) d\mu_\sigma.$$

Standard computation shows that

$$\int_{\partial B_s(x)} \frac{\partial}{\partial s} d^2(v_\sigma, w) d\Sigma_\sigma$$

$$\leq s^{-n-1} \frac{d}{ds} \left(\frac{1}{s^{n-1}} \int_{\partial B_s(x)} d^2(v_\sigma, w) d\Sigma_\sigma \right) + C\sigma^2 s \int_{\partial B_s(x)} d^2(v_\sigma, w) d\Sigma_\sigma$$

$$\leq s^{-n-1} \frac{d}{ds} \left(\frac{e^{C\sigma^2}}{s^{n-1}} \int_{\partial B_s(x)} d^2(v_\sigma, w) d\Sigma_\sigma \right)$$

where the $C\sigma^2$ term comes from the fact that the domain metric is non-Euclidean. Combining the above two inequalities

$$0 \leq \frac{d}{ds} \left(\frac{e^{C\sigma^2}}{s^{n-1}} \int_{\partial B_s(x)} d^2(v_\sigma, w) d\Sigma_\sigma \right) + C\sigma^2 s^{-n+1} \int_{B_s(x)} d(v_\sigma, w) d(v_\sigma, P_0) d\mu_\sigma$$

$$\leq \frac{d}{ds} \left(\frac{e^{C\sigma^2}}{s^{n-1}} \int_{\partial B_s(x)} d^2(v_\sigma, w) d\Sigma_\sigma \right)$$

$$+ C\sigma^2 s^{-n+1} \int_{B_s(x)} d^2(v_\sigma, w) d\mu_\sigma + C\sigma^2 s^{-n+1} \int_{B_s(x)} d^2(v_\sigma, P_0) d\mu_\sigma. \quad (77)$$

48
Now set $w = w_\sigma$. Clearly $E^{w_\sigma}(1) \leq E^{v_\sigma}(1) \leq A$. Furthermore, by Lemma 39 and the assumption $E^{v_\sigma}(1) \leq A$, we thus have that

$$0 \leq \frac{d}{ds} \left(\frac{e^{Cs^2}}{s^{n-1}} \int_{\partial B_t(x)} d^2(v_\sigma, w_\sigma) d\Sigma_\sigma \right) + C\sigma^2 s^{-n+1}.$$

Integrating this over $s \in (0, t)$, we obtain

$$0 \leq \frac{e^{Cs^2}}{t^{n-1}} \int_{\partial B_t(x)} d^2(v_\sigma, w_\sigma) d\Sigma_\sigma - \frac{1}{C_n} d^2(v_\sigma(x), w_\sigma(x)) + C\sigma^2 t^{-n+2}$$

where C_n depends only on n. Thus,

$$t^{n-1} d^2(v_\sigma(x), w_\sigma(x)) \leq C \int_{\partial B_t(x)} d^2(v_\sigma, w_\sigma) d\Sigma_\sigma + C\sigma^2 t.$$

Integrating this over $t \in (0, \frac{1-2R}{2})$, we have

$$d^2(v_\sigma(x), w_\sigma(x)) \leq C \int_{B_{1-R}(x)} d^2(v_\sigma, w_\sigma) d\mu_\sigma + C\sigma^2$$

$$\leq C \int_{B_1(0)} d^2(v_\sigma, w_\sigma) d\mu_\sigma + C\sigma^2.$$

Thus, the assertion of the lemma follows from Lemma 39 and Lemma 40. Q.E.D.

For u as in Proposition 37, $\sigma_i > 0$ and $x_i \in S_j(u) \cap B_{2\sigma_i}(x_*)$, use normal coordinates to write the unit ball centered at $x_i = 0$ as $(B_1(0), g)$. (Here, by rescaling if necessary, we can assume without the loss of generality that $B_1(0) \subset B_{\sigma_i}(x_*)$.) Define the σ_i-blow up map and the approximating harmonic σ_i-blow up map at x_i as in Definition 38 and denote them as

$$v_i, w_i : (B_1(0), g_i) \to (Y^{k-j}_2, d_h) \text{ where } g_i(x) = g(\sigma_i x). \quad (78)$$

Furthermore, set

$$\nu_i := \left(\frac{I_{v_{xi}}(\sigma_i)}{\sigma_i^{n-1}} \right)^{1/2}.$$
Lemma 43 With \(u \) as in Proposition 37, let \(x_i \in S_j(u) \cap B_{2r}(x_*) \), \(\sigma_i \to 0 \) and \(v_i \) as in (78). If there exists \(A > 0 \) such that

\[
\frac{\sigma_i E_{x_i}(\sigma_i)}{I_{x_i}^v(\sigma_i)} \leq A
\]

(79)

then there exists a subsequence of \(\{i\} \) (which we denote again by \(\{i\} \) by abuse of notation) and a non-constant harmonic map \(v_0 : (B_1(0), \delta) \to Y_0 \) into an NPC space such that \(v_i \to v_0 \), \(w_i \to v_0 \) locally uniformly in the pullback sense. (Here, \(\delta \) is the Euclidean metric.) Furthermore, (after identifying \(x_i = 0 \) via normal coordinates)

\[
I_{v_0}^v(1) = \lim_{i \to \infty} I_{x_i}^v(1) = 1 \quad \text{and} \quad E_{v_0}^v(1) \leq \lim_{i \to \infty} E_{x_i}^v(1).
\]

(80)

Proof. Let \(w_i \) as in (78), identify \(x_i = 0 \) via normal coordinates and write \(E = E_0 \), \(I = I_0 \) for simplicity. By Assumption (79) and the energy minimizing property of \(w_i \), we have

\[
E_{w_i}(1) \leq E_{v_i}(1) \leq E_{v_0}(1) \leq A.
\]

(81)

Therefore, \(w_i \) is a family of harmonic maps with uniformly bounded energy. For any \(r \in (0, 1) \), the Lipschitz constant of \(w_i \) in \(B_r(0) \) depends only the energy bound and \(r \) and is independent of \(i \) (cf. [KS1] Theorem 2.4.6). Thus, \(w_i \) has a locally uniform Lipschitz constant and, by [KS2] Proposition 3.7, there exists a subsequence (which we still denote by \(\{i\} \) by an abuse of notation) such that \(w_i \) converges locally uniformly in the pullback sense to a map \(v_0 \). By [KS2] Theorem 3.11, \(v_0 \) is energy minimizing on \(B_r(0) \) for any \(r \in (0, 1) \). The fact that \(v_0 \) is energy minimizing on every compact subset of \(B_1(0) \) immediately implies \(v_0 \) is energy minimizing on \(B_1(0) \) by the same argument as in (4).

We now claim

\[
d(v_i, w_i) \to 0 \text{ in } W^{1,2}.
\]

(82)

To prove (82), first note that by Lemma 40 and (81),

\[
E_{v_i}(1) - E_{w_i}(1) \leq C\sigma_i^2.
\]

(83)

Hence, Lemma 39 implies

\[
\int_{B_1(0)} |\nabla d(v_i, w_i)|^2 \, d\mu_i \leq C\sigma_i^2
\]

50
and
\[\int_{B_i(0)} d^2(v_i, w_i) \, d\mu_i \leq C\sigma_i^2. \] (84)

Since \(d\mu_i \) is uniformly close to the Euclidean volume form \(d\mu_0 \) it follows that \(d(v_i, w_i) \to 0 \) in \(W^{1,2} \) as claimed in (82). It now follows from Proposition 42 that \(d(v_i, w_i) \to 0 \) uniformly in \(B_R(0) \), and hence
\[\lim_{i \to \infty} v_i = v_0 \quad \text{uniformly in the pullback sense in } B_R(0). \] (85)

The harmonicity of \(w_i \) implies the subharmonicity of \(d^2(w_i, P_0) \), and hence
\[\int_{\partial B_r(0)} d^2(w_i, P_0) d\Sigma_i \leq C r^{n-1} \int_{\partial B_1(0)} d^2(w_i, P_0) d\Sigma_i \leq C. \]

Since \(d(P_0, w_i(0)) = d(v_i(0), w_i(0)) \to 0 \), we have
\[\lim_{i \to 0} \int_{\partial B_r(0)} d^2(w_i, P_0) d\Sigma_i = \lim_{i \to 0} \int_{\partial B_r(0)} d^2(w_i, w_i(0)) d\Sigma_i = \int_{\partial B_r(0)} d^2(v_0, v_0(0)) d\Sigma_0 \]

where \(d\Sigma_0 \) is the volume form with respect to the Euclidean metric. Thus, by the Dominated Convergence Theorem,
\[\lim_{i \to 0} \int_{B_1(0)} d^2(w_i, P_0) \, d\mu_i = \int_0^1 \lim_{i \to 0} \int_{\partial B_r(0)} d^2(w_i, P_0) d\Sigma_i \, dr \]
\[= \int_0^1 \int_{\partial B_r(0)} d^2(v_0, v_0(0)) d\Sigma_0 \, dr \]
\[= \int_{B_1(0)} d^2(v_0, v_0(0)) \, d\mu_0. \]

Thus, the \(L^2 \) convergence of \(d(v_i, w_i) \) to 0 implies,
\[\lim_{i \to 0} \int_{B_1(0)} d^2(v_i, P_0) \, d\mu_i = \int_{B_1(0)} d^2(v_0, v_0(0)) \, d\mu_0. \]

Finally, since
\[\int_{B_1(0)} |\nabla d(v_i, P_0)|^2 \, d\mu_i \leq \int_{B_1(0)} |\nabla v_i|^2 \, d\mu_i \leq A, \]
we conclude by standard \(W^{1,2} \)-trace theory that
\[1 = \lim_{i \to \infty} \int_{\partial B_i(0)} d^2(v_i, P_0) \, d\mu_i = \int_{\partial B_1(0)} d^2(v_0, v_0(0)) \, d\mu_0. \]
which is the first assertion of (80). By uniform Lipschitz continuity of \(w_i \) and the lower semicontinuity of energy [KS2] Lemma 3.8, we have

\[
E_{v_0}^v(1) \leq \lim_{i \to \infty} E_{v_0}^{w_i}(1).
\]

Combined with (83), we obtain the second assertion of (80). Q.E.D.

Proof of Proposition 37. If (68) is not true, then there exist sequences \(x_i \in S_j(u) \cap B_{\sigma^\star}(x_\star) \) and \(\sigma_i \to 0 \) such that

\[
\sigma_i \frac{E_{v_i}^\sigma_i(\sigma_i)}{I_{v_i}^\sigma_i(\sigma_i)} < 1 - \epsilon_0
\]

which is equivalent to

\[
\frac{E_{v_i}^v(1)}{I_{v_i}^v(1)} < 1 - \epsilon_0.
\]

By (80),

\[
\frac{E_{v_0}^v(1)}{I_{v_0}^v(1)} \leq \lim_{i \to 0} \frac{E_{v_i}^v(1)}{I_{v_i}^v(1)} \leq 1 - \epsilon_0.
\]

On the other hand, since \(v_0 \) is a nonconstant harmonic map with respect to the Euclidean metric, it follows that

\[
1 \leq \frac{E_{v_0}^v(1)}{I_{v_0}^v(1)}.
\]

The contradiction proves the assertion of the Proposition. Q.E.D.

8 The Domain variation

Let \(u = (V, v) : (B_{\sigma^\star}(x_\star), g) \to (\mathbb{R}^j \times Y_{2}^{k-j}, d_G) \) be a harmonic map that satisfies the assumptions of Section 5. The main goal of this section is to obtain estimates for the domain variation of the singular component map \(v : B_{\sigma^\star}(x_\star) \to (Y_{2}^{k-j}, d_h) \). We start by showing a regularity result for the non-singular component map.
Lemma 44. Let $u = (V, v) : B_{\sigma}(x_*) \rightarrow (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map satisfying the assumptions of Section 5. If $x_0 \in B_{2\sigma}(x_*)$ and $\sigma \in (0, \frac{\alpha}{2})$, then $V^I \in W^{2,p}(B_{\sigma}(x_0))$ for any $p > 1$.

Proof. For a smooth $\eta = (\eta^1, \ldots, \eta^j)$ with compact support in $B_{\sigma}(x_0)$, let $V_t = V + t \eta$ and $u_t = (V_t, v)$. For almost every $x \in S_j(u)$, Lemma 26 implies $|\nabla v|^2(x) = 0$ and

$$|\nabla u_t|^2(x) = |\nabla V_t|^2(x)$$

$$= G_{11}(V_t, v) \nabla V_t \cdot \nabla V_t$$

$$= G_{11}(V_t, v) \nabla V \cdot \nabla V (x) + 2t G_{11}(V_t, v) \nabla V \cdot \nabla \eta (x)$$

$$+ t^2 G_{11}(V_t, v) \nabla \eta \cdot \nabla \eta (x).$$

In $R(u)$,

$$|\nabla u_t|^2$$

$$= G_{11}(V_t, v) \nabla V \cdot \nabla V + 2G_{12}(V_t, v) \nabla V \cdot \nabla v + G_{22}(V_t, v) \nabla v \cdot \nabla v$$

$$= G_{11}(V_t, v) \nabla V \cdot \nabla V + 2t G_{11}(V_t, v) \nabla V \cdot \nabla \eta + t^2 G_{11}(V_t, v) \nabla \eta \cdot \nabla \eta$$

$$+ 2G_{12}(V_t, v) \nabla V \cdot \nabla v + 2t G_{12}(V_t, v) \nabla \eta \cdot \nabla v + G_{22}(V_t, v) \nabla v \cdot \nabla v.$$

Thus, $|\nabla u_t|^2(x)$ is an integrable function in the variables x, t and, for almost every $x \in B_{\sigma}(x_0)$, $|\nabla u_t|^2(x)$ is a smooth function in t. Furthermore, $\frac{d}{dt} |\nabla u_t|^2$ is bounded independently of t by an L^1 function by the metric estimates and the Lipschitz continuity of u. We can thus conclude that $t \mapsto E(u_t)$ is a smooth function in t, and its derivatives can be computed by differentiation under the integral sign. In particular, since $\frac{d}{dt} E(u_t)|_{t=0} = 0$, we obtain

$$0 = \int_{B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{11}(V_t, v) \nabla V \cdot \nabla V + 2G_{11}(V, v) \nabla V \cdot \nabla \eta \ d\mu$$

$$+ 2 \int_{B_{\sigma}(x_0) \cap R(u)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V_t, v) |_{t=0} \nabla V \cdot \nabla v + G_{12}(V, v) \nabla \eta \cdot \nabla v \ d\mu$$

$$+ 2 \int_{B_{\sigma}(x_0) \cap R(u)} \frac{d}{dt} \bigg|_{t=0} G_{22}(V_t, v) |_{t=0} \nabla v \cdot \nabla v \ d\mu$$

$$= \int_{B_{\sigma}(x_0)} \eta^I \frac{\partial}{\partial V^I} G_{11}(V, v) \nabla V \cdot \nabla V + 2G_{11}(V, v) \nabla V \cdot \nabla \eta \ d\mu$$

$$+ 2 \int_{B_{\sigma}(x_0) \cap R(u)} \eta^I \frac{\partial}{\partial V^I} G_{12}(V, v) \nabla V \cdot \nabla v + G_{12}(V, v) \nabla \eta \cdot \nabla v \ d\mu$$

$$+ 2 \int_{B_{\sigma}(x_0) \cap R(u)} \eta^I \frac{\partial}{\partial V^I} G_{22}(V, v) \nabla v \cdot \nabla v \ d\mu.$$
\[
+ \int_{B_\varepsilon(x_0) \cap R(u)} \eta^I \frac{\partial}{\partial V^I} G_{22}(V, v) \nabla v \cdot \nabla v \, d\mu.
\]

By applying integration by parts in the same way as the term \((II)_2\) of Proposition 32, we obtain
\[
\int_{B_\varepsilon(x_0) \cap R(u)} G_{12}(V, v) \nabla \eta \cdot \nabla v \, d\mu = \int_{B_\varepsilon(x_0) \cap R(u)} g^{\alpha\beta} G_{1k}(V, v) \frac{\partial \eta^I}{\partial x^\alpha} \frac{\partial v^k}{\partial x^\beta} \, d\mu
\]
\[
= \int_{B_\varepsilon(x_0)} \eta^I f_{1k} \, d\mu
\]
where \(f_{1k}\) is a bounded function. Thus, (86) implies that
\[
- \int_{B_\varepsilon(x_0)} g^{\alpha\beta} G_{IJ}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{\partial \eta^J}{\partial x^\beta} \, d\mu = \int_{B_\varepsilon(x_0)} \eta \cdot F \, d\mu \tag{88}
\]
for some bounded vector field \(F\). Let
\[
\eta^I = \sum_K G^{JK}(V, v) \varphi
\]
for \(\varphi \in C^\infty_c(B_\varepsilon(x_0))\). Then
\[
\frac{\partial \eta^I}{\partial x^\beta} = \sum_K \left(\varphi \frac{\partial}{\partial V^L} G^{JK}(V, v) \frac{\partial V^L}{\partial x^\beta} + \varphi \frac{\partial}{\partial v^l} G^{JK}(V, v) \frac{\partial v^l}{\partial x^\beta} + G^{JK}(V, v) \frac{\partial \varphi}{\partial x^\beta} \right)
\]
and hence
\[
G_{IJ}(V, v) \frac{\partial \eta^J}{\partial x^\beta} = \varphi \sum_K \left(G_{IJ}(V, v) \frac{\partial}{\partial V^L} G^{JK}(V, v) \frac{\partial V^L}{\partial x^\beta} \right)
\]
\[
+ G_{IJ}(V, v) \frac{\partial}{\partial v^l} G^{JK}(V, v) \frac{\partial v^l}{\partial x^\beta} + \frac{\partial \varphi}{\partial x^\beta}.
\]

Since \(H\) is a smooth Riemannian metric, \(H_{II}^{1/2}, H_{KK}^{-1/2}\) are uniformly bounded. Thus, (24), (25), (26) and (43) imply
\[
\left| G_{IJ} \frac{\partial}{\partial V^L} G^{JK} \frac{\partial V^L}{\partial x^\beta} \right| = \left| G_{IJ} G^{JM} \frac{\partial}{\partial V^L} G_{MN} G^{NK} \frac{\partial V^L}{\partial x^\beta} \right|
\]
\[
\leq H_{II}^{1/2} H_{KK}^{-1/2} \left| H_{LL}^{1/2} \frac{\partial V^L}{\partial x^\beta} \right|
\]
\[
\leq C
\]
and

\[\left| G_{IJ}(V, v) \frac{\partial}{\partial v^l} G^{JK}(V, v) \frac{\partial v^j}{\partial x^\beta} \right| = \left| G_{IJ} G^{JM} \frac{\partial}{\partial V^L} G_{MN} G^{NJ} \right| \leq H^2 H^{-\frac{1}{2}} h^2 \frac{\partial v^j}{\partial x^\beta} \leq C. \]

Thus, (88) implies

\[-\int_{B_\sigma(x_0)} g^{\alpha\beta} \frac{\partial V^I}{\partial x^\alpha} \frac{\partial \varphi}{\partial x^\beta} d\mu = \int_{B_\sigma(x_0)} \varphi \cdot f d\mu \]

for some bounded function \(f \). By elliptic regularity, \(V^I \in W^{2, p}(B_\sigma(x_0)) \).

Q.E.D.

We now prove the following weaker version of the Lemma 44 for \(u \) and the singular component map \(v \).

Lemma 45 Let \(u = (V, v) : B_\sigma(x_*) \to (\mathbb{R}^j \times Y_{2^k-j}, d_G) \) be a harmonic map satisfying the assumptions of Section 5. If \(x_0 \in B_{2\sigma}(x_*) \) and \(\sigma \in (0, \frac{\sigma_0}{4}) \), then there exists a constant \(C > 0 \) depending only on the dimension of the domain, the metric \(g \) and the total energy of \(u \) such that

\[\int_{B_\sigma(x_0) \setminus \{d(v, P_0) = 0\}} d(v, P_0)|\nabla \nabla u|d\mu \leq C \]

and

\[\int_{B_\sigma(x_0) \setminus \{d(v, P_0) = 0\}} d(v, P_0)|\nabla \nabla v|d\mu \leq C. \]

Proof. Let

\[d_\epsilon = \max\{d(v, P_0) - \epsilon, 0\} \]

and \(\varphi \in C^\infty_c(B_{\frac{\sigma}{2}}(x_0)) \) such that \(0 \leq \varphi \leq 1, \varphi = 1 \) on \(B_\sigma(x_0) \), \(\varphi = 0 \) outside \(B_{\frac{3\sigma}{2}}(x_0) \) and \(|\nabla \varphi| \leq \frac{16}{\sigma^2} \). Let \(\Omega_1 \) be the support of the function \(d_\epsilon^2 \varphi^2 \) which is compactly contained in \(B_{\frac{\sigma}{2}}(x_0) \setminus \{d(v, P_0) = 0\} \subset B_{\frac{3\sigma}{2}}(x_0) \setminus \mathcal{S}_j(u) \). By the proof of [GS] Lemma 6.6, Assumption 4 implies that the inequality

\[\frac{1}{2} \triangle |\nabla u|^2 \geq |\nabla \nabla u|^2 - c|\nabla u|^2 \]
holds distributionally in Ω_1. Thus by using $d_\epsilon^2 \varphi^2$ as a the test function
\[- \int_{B_{\frac{r_0}{2}}(x_0)} d_\epsilon \varphi \nabla (d_\epsilon \varphi) \cdot \nabla |\nabla u|^2 d\mu \geq \int_{B_{\frac{r_0}{2}}(x_0)} d_\epsilon^2 \varphi^2 (|\nabla \nabla u|^2 - c|\nabla u|^2) d\mu.\]

After an application of the arithmetic-geometric means inequality, we obtain
\[
\frac{1}{2} \int_{B_{\frac{r_0}{2}}(x_0)} |\nabla (d_\epsilon \varphi)|^2 |\nabla u|^2 d\mu + c \int_{B_{\frac{r_0}{2}}(x_0)} d_\epsilon^2 \varphi^2 |\nabla u|^2 d\mu \geq \frac{1}{2} \int_{B_{\frac{r_0}{2}}(x_0)} d_\epsilon^2 \varphi^2 |\nabla \nabla u|^2 d\mu.
\]

Noting that $d_\epsilon^2 \varphi^2$, $\varphi^2 |\nabla d_\epsilon|^2$ are bounded by the Lipschitz constant of v (and hence of u) in $B_{\frac{r_0}{2}}(x_0)$, we obtain,
\[
\left(\int_{B_\rho(x_0)} d_\epsilon |\nabla \nabla u| d\mu \right)^2 \leq C \int_{B_\rho(x_0)} d_\epsilon^2 |\nabla \nabla u|^2 d\mu \leq C \int_{B_\rho(x_0)} d_\epsilon^2 \varphi^2 |\nabla \nabla u|^2 d\mu \leq C \left(\int_{B_{\frac{r_0}{2}}(x_0)} |\nabla (d_\epsilon \varphi)|^2 |\nabla u|^2 d\mu + 2c \int_{B_{\frac{r_0}{2}}(x_0)} d_\epsilon^2 \varphi^2 |\nabla u|^2 d\mu \right) \leq C.
\]

By letting $\epsilon \to 0$, the first inequality follows. The second inequality follows from the first. Q.E.D.

Let $u = (V,v) : (B_\sigma(x_\star),g) \to (\mathbf{R}^j \times Y_2^{k-j},d_G)$ be a harmonic map satisfying the assumptions of Section 5, $x_0 \in S_j(u) \cap B_{\frac{r_0}{2}}(x_\star)$ and let $r_0 \in (0,\frac{r_0}{2})$. Define the map $v_t : B_{r_0}(x_0) \to (Y_2^{k-j},d_h)$ by setting
\[v_t(x) = v \circ F_t(x)\]
where F_t is a diffeomorphism given by
\[F_t(x) = (1 + t\xi(x)) x, \quad \xi \in C^\infty_c(B_{r_0}(x_0)), \quad 0 \leq \xi \leq 1.\]

Define
\[u_t : B_{r_0}(x_0) \to (\mathbf{R}^j \times Y_2^{k-j},d_G)\]
by setting
\[u_t := (V, v_t). \]
Since \(u = u_t \) on \(\partial B_{\sigma}(x_0) \), \(u_t \) is a competitor.

Lemma 46 Let \(u = (V, v) : (B_{\sigma}(x_0), g) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G) \) be a harmonic map satisfying the assumptions of Section 5. There exists \(C > 0 \) such that for \(x_0 \in S_j(u) \cap B_{\sigma^2}(x_0) \) and \(\sigma \in (0, r_0) \), we have
\[\lim_{t \to 0} \frac{E^v_{x_0}(\sigma) - E^{v_t}_{x_0}(\sigma)}{t} \leq C \int_{B_{\sigma}(x_0)} \xi d^2(v, P_0) d\mu + C \sigma \int_{B_{\sigma}(x_0)} \xi |\nabla v|^2 d\mu \]
Furthermore, \(C \) depends only on the constant in the estimates (24)-(28) for the target metric \(G \), the domain metric \(g \) and the Lipschitz constant of \(u \).

Proof. First note that since \(v \in W^{1,2} \), the same argument as in [GS] p.192 implies that the limit on the left hand side of the inequality above exists. Moreover, we can take the limit under the integral sign to obtain
\[\lim_{t \to 0} \frac{E^v_{x_0}(\sigma) - E^{v_t}_{x_0}(\sigma)}{t} = \int_{B_{\sigma}(x_0)} \lim_{t \to 0} \frac{|\nabla v|^2 - |\nabla v_t|^2}{t} d\mu. \]
Next, we claim
\[\lim_{t \to 0} \int_{B_{\sigma}(x_0)} |\nabla u_t|^2 - |\nabla u|^2 d\mu = \int_{B_{\sigma}(x_0)} \lim_{t \to 0} \frac{|\nabla u_t|^2 - |\nabla u|^2}{t} d\mu. \]
We now prove this claim. For almost every \(x \in F_t^{-1}(S_j(u)) \), by the chain rule (cf. [KS1] (2.3iv)) and Lemma 26, we have
\[|\nabla v_t|^2(x) = 0 \quad \text{and} \quad |\nabla u_t|^2(x) = |\nabla V|^2(x). \]
By Assumption 2 (ii), this implies that for almost every \(x \in F_t^{-1}(S_j(u)) \), we can write by letting \(y = F_t(x) \)
\[|\nabla u_t|^2(x) = |\nabla V|^2(x) \]
\[= G_{11}(V(x), v_t(x)) \nabla V \cdot \nabla V(x) \]
\[= g^{\alpha\beta}(F_t^{-1}(y))G_{11}(V(F_t^{-1}(y)), v(F_t^{-1}(y))) \partial V^I \partial x_\alpha(F_t^{-1}(y)) \partial V^J \partial x_\beta(F_t^{-1}(y)). \]
For \(x \in F_t^{-1}(\mathcal{R}(u)) \), again let \(y = F_t(x) \) and write

\[
|\nabla u_t|^2(x) = G_{11}(V(x), v_t(x)) \nabla V \cdot \nabla V(x) + 2G_{12}(V(x), v_t(x)) \nabla V \cdot \nabla v_t(x) + G_{22}(V(x), v_t(x)) \nabla v_t \cdot \nabla v_t(x)
\]

\[
= \gamma^\alpha(F_t^{-1}(y)) \gamma_1 \gamma_2 \frac{\partial V^I}{\partial x^\alpha} (F_t^{-1}(y)) \frac{\partial V^J}{\partial x^\beta} (F_t^{-1}(y))
\]

\[
+ 2g^\alpha(F_t^{-1}(y)) \gamma_1 \gamma_2 \frac{\partial V^I}{\partial x^\alpha} (F_t^{-1}(y)) \frac{\partial v^I}{\partial y^\gamma} (F_t^{-1}(y)) \frac{\partial y^\gamma}{\partial x^\beta} (F_t^{-1}(y))
\]

\[
+ g^\alpha(F_t^{-1}(y)) \gamma_2 \frac{\partial v^I}{\partial y^\gamma} (F_t^{-1}(y)) \frac{\partial v^m}{\partial y^\delta} (F_t^{-1}(y)) \frac{\partial y^\delta}{\partial x^\beta} (F_t^{-1}(y)).
\]

Thus, \(|\nabla u_t|^2(x) \) is an integrable function in the variables \(x, t \) and, for almost every \(x \in B_\sigma(x_0), \ |\nabla u_t|^2(x) \) is a smooth function in \(t \). Furthermore, \(\frac{d}{dt} |\nabla u_t|^2 \) involves only second derivatives of \(V \) and first derivatives of \(v \). Hence, \(\frac{d}{dt} |\nabla u_t|^2 \) is bounded independently of \(t \) by an \(L^1 \) function by the metric estimates (24), (25), the Lipschitz continuity of \(u \) and Lemma 44. We can thus conclude that the derivative of \(t \mapsto E(u_t) \) can be computed by differentiation under the integral sign. This proves (90).

Since \(u \) is harmonic,

\[
0 = \lim_{t \to 0} \frac{E_{x_0}^u(\sigma) - E_{x_0}^{u_t}(\sigma)}{t}
\]

\[
= \lim_{t \to 0} \frac{1}{t} \int_{B_\sigma(x_0)} \frac{|\nabla u|^2 - |\nabla u_t|^2}{d\mu}
\]

\[
= \int_{B_\sigma(x_0)} \lim_{t \to 0} \frac{|\nabla u|^2 - |\nabla u_t|^2}{t} d\mu \quad \text{by (90)}
\]

\[
= \int_{R(u) \cap B_\sigma(x_0)} \lim_{t \to 0} \frac{|\nabla u|^2 - |\nabla u_t|^2}{t} d\mu + \int_{S(u) \cap B_\sigma(x_0)} \lim_{t \to 0} \frac{|\nabla u|^2 - |\nabla u_t|^2}{t} d\mu.
\]

To address the integral over \(S_j(u) \cap B_\sigma(x_0) \) on the right hand side above, we consider the following two sets \(S_j(u) \cap F_t^{-1}(S_j(u)) \) and \(S_j(u) \cap F_t^{-1}(R_j(u)) \). By Lemma 24 and (91),

\[
\frac{|\nabla u|^2(x) - |\nabla u_t|^2(x)}{t} = 0 = \frac{|\nabla v|^2(x) - |\nabla v_t|^2(x)}{t}
\]

for almost every \(x \in S_j(u) \cap F_t^{-1}(S_j(u)) \). For \(x \in S_j(u) \cap F_t^{-1}(R(u)) \),

\[
d(v_t(x), P_0) = d(v_t(x), v(x)) \leq C|F_t(x) - x| \leq Ct\xi(x)|x|
\]

58
and hence the metric estimates (24) imply
\[
|\nabla u_t|^2(x) \\
= G_{11}(V, v_t)\nabla V \cdot \nabla V + 2G_{12}(V, v_t)\nabla V \cdot \nabla v_t + G_{22}(V, v_t)\nabla v_t \cdot \nabla v_t
\]
Thus, for almost every \(x \in S_j(u) \), we have
\[
\left| \frac{|\nabla u_t|^2(x) - |\nabla u|^2(x)}{t} - \frac{|\nabla v_t|^2(x) - |\nabla v|^2(x)}{t} \right| \leq O(t).
\]
Since \(S_j(u) \) is of full measure in \(S(u) \) by Assumption 2 (ii), (94) and (95) imply
\[
\int_{S(u) \cap B_{\sigma}(x_0)} \lim_{t \to 0} \frac{|\nabla v|^2 - |\nabla v_t|^2}{t} d\mu = \int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \lim_{t \to 0} \frac{|\nabla u_t|^2 - |\nabla u|^2}{t} d\mu.
\]
Combined with (89), we obtain
\[
\lim_{t \to 0} \frac{E_v^u(x_0) - E_v^{u_t}(x_0)}{t} = -\int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \lim_{t \to 0} \frac{d}{dt} \bigg|_{t=0} |\nabla v|^2 d\mu + \int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} |\nabla u_t|^2 d\mu.
\]
For \(x \in \mathcal{R}(u) \) and \(t \) sufficiently small such that \(F_t(x) \in \mathcal{R}(u) \),
\[
|\nabla u_t|^2 - |\nabla u|^2 = G_{11}(V, v_t)\nabla V \cdot \nabla V - G_{11}(V, v)\nabla V \cdot \nabla V + 2(G_{12}(V, v_t)\nabla V \cdot \nabla v_t - G_{12}(V, v)\nabla V \cdot \nabla v) + G_{22}(V, v_t)\nabla v_t \cdot \nabla v_t - G_{22}(V, v)\nabla v \cdot \nabla v.
\]
Divide the above by \(t \) and take the limit as \(t \to 0 \). Integrating the resulting inequality and combining with (96)
\[
\lim_{t \to 0} \frac{E_v^u(x_0) - E_v^{u_t}(x_0)}{t} = \int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{11}(V, v_t)\nabla V \cdot \nabla V d\mu + 2\int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V, v_t)\nabla V \cdot \nabla v_t d\mu + \int_{\mathcal{R}(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} (V, v_t)\nabla v_t \cdot \nabla v_t d\mu =: (i) + (ii) + (iii)
\]
where $\Box(V, v) = G_{22}(V, v) - h(v)$. We claim that

\[(i) := \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{11}(V, v_t) \nabla V \cdot \nabla V \leq C \int_{B_\sigma(x_0)} \xi d^2(v, P_0) d\mu + C\sigma^2 \int_{B_\sigma(x_0)} \xi |\nabla v|^2 d\mu, \tag{98}\]

\[(ii) := 2 \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V, v_t) \nabla V \cdot \nabla v_t d\mu \leq C \int_{B_\sigma(x_0)} \xi d^2(v, P_0) d\mu + C\sigma^2 \int_{B_\sigma(x_0)} \xi |\nabla v|^2. \tag{99}\]

and

\[(iii) := \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} \Box(V, v_t) \nabla v_t \cdot \nabla v_t d\mu \leq C \int_{B_\sigma(x_0)} \xi d^2(v, P_0) d\mu + C\sigma \int_{B_\sigma(x_0)} \xi |\nabla v|^2 d\mu. \tag{100}\]

Combined with (97), the estimates (98), (99) and (100) prove the Lemma. Thus, our goal now is to prove these estimates.

We first prove (i). Let $x \in \mathcal{R}(u) \cap B_\sigma(x_0)$. Then with $y^\alpha = (1 + t\xi(x))x^\alpha$ and $\frac{\partial y^\alpha}{\partial t} = \xi(x)x^\alpha$, we have

\[
\left[\frac{d}{dt} \bigg|_{t=0} G_{11}(V, v_t) \right]_{IJ} \nabla V^I \cdot \nabla V^J \leq C \left| \sum_{i=1}^{k-j} \frac{\partial}{\partial v^i} G_{11}(V, v) \sum_{\alpha} \frac{\partial v^i}{\partial y^\alpha(x)} \frac{\partial y^\alpha}{\partial t} \right|
\leq C\sigma \xi d(v, P_0) |\nabla v|
\]

which in turn implies

\[(i) := \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{11}(V, v_t) \nabla V \cdot \nabla V \leq C\sigma \int_{B_\sigma(x_0)} \xi d(v, P_0) |\nabla v| \leq C \int_{B_\sigma(x_0)} \xi d^2(v, P_0) d\mu + C\sigma^2 \int_{B_\sigma(x_0)} \xi |\nabla v|^2 d\mu. \]
This proves (98).

Next, we prove \((ii)\). First, we write

\[
(ii) := 2 \int_{R(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V, v_t) \nabla V \cdot \nabla v_t d\mu
\]

\[
= 2 \int_{R(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V, v_t) \nabla V \cdot \nabla v d\mu
\]

\[
+ 2 \int_{R(u) \cap B_{\sigma}(x_0)} G_{12}(V, v) \frac{d}{dt} \bigg|_{t=0} \nabla V \cdot \nabla v d\mu
\]

\[
=: (ii)_1 + (ii)_2. \tag{101}
\]

We can estimate \((ii)_1\) in similar way as \((i)\) to obtain

\[
(ii)_1 := 2 \int_{R(u) \cap B_{\sigma}(x_0)} \frac{d}{dt} \bigg|_{t=0} G_{12}(V, v_t) \nabla V \cdot \nabla v d\mu
\]

\[
\leq C \int_{B_{\sigma}(x_0)} \xi d^2(v, P_0) d\mu + C\sigma^2 \int_{B_{\sigma}(x_0)} \xi |\nabla v|^2 d\mu. \tag{102}
\]

(Note that in comparison to \((i)\) we used the Lipschitz property of \(v\) in order to throw out one term of \(|\nabla v|\)). We now estimate \((ii)_2\). First, note that since

\[
\frac{\partial v^i}{\partial x^\beta}(x) = \frac{\partial v^i}{\partial y^\gamma}(y) \left((1 + t\xi(x))\delta_{\beta\gamma} + tx^\gamma \frac{\partial \xi}{\partial x^\beta}(x) \right),
\]

we also have

\[
\frac{d}{dt} \frac{\partial v^i}{\partial x^\beta}(x)\bigg|_{t=0} = \frac{\partial^2 v^i}{\partial x^\beta \partial x^\gamma}(x) \xi_{\gamma} + \frac{\partial v^i}{\partial x^\beta}(x) + \frac{\partial v^i}{\partial x^\gamma}(x) \frac{\partial \xi}{\partial x^\beta}
\]

hence Lemma 45 implies

\[
\int_{B_{\sigma}(x_0) \setminus \{d(v, P_0) = 0\}} d(v, P_0) \left| g^{\alpha\beta} \frac{d}{dt} \frac{\partial v^i}{\partial x^\beta} \bigg|_{t=0} h^2_{ii} \right| d\mu \leq C.
\]

Thus, by the metric estimates (24), the Lipschitz property of \(V^I\) and with \(A^+_{\epsilon i}\) defined as in the proof of Proposition 32, we have

\[
\int_{B_{\sigma}(x_0) \setminus (A^+_{\epsilon i} \cup S_j(u))} \left| g^{\alpha\beta} G_{\epsilon i}(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d}{dt} \frac{\partial v^i}{\partial x^\beta} \bigg|_{t=0} \right| d\mu
\]
Thus,

$$(ii)_2 \leq \int_{A^+} g^{\alpha \beta} G_I(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} d\mu + C\epsilon_i.$$

Integrating by parts as in (53), we write

$$\int_{A^+} g^{\alpha \beta} G_I(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} d\mu$$

$$= \lim_{\varepsilon \to 0} \left[-\int_{A^+} \varphi e \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^\alpha} \left(\sqrt{g} g^{\alpha \beta} \frac{\partial V^I}{\partial x^\alpha} \right) G_I(V, v) \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} d\mu
- \int_{A^+} \varphi e g^{\alpha \beta} \frac{\partial}{\partial x^\beta} G_I(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} d\mu
- \int_{A^+} g^{\alpha \beta} G_I(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} d\mu
+ \int_{\partial A^+} \varphi e g^{\alpha \beta} G_I(V, v) \frac{\partial V^I}{\partial x^\alpha} \frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} \left(\vec{n} \cdot \frac{\partial}{\partial x^\beta} \right) d\Sigma \right]$$

$$= \lim_{\varepsilon \to 0} [(ii)_{21} + (ii)_{22} + (ii)_{23} + (ii)_{24}] .$$

By following the proof of estimate $(II)_2$, we obtain

$$(ii)_2 \leq C \int_{B^+} \xi d(v, P_0) |\nabla v| d\mu$$

$$\leq C \int_{B^+} \xi |\nabla v| d\mu + C\sigma^2 \int_{B^+} \xi |\nabla v|^2 d\mu .$$

Note that we have $\frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} = \xi \frac{\partial \varphi_i^I}{\partial x^\alpha} \varepsilon$ in (103) instead of $\frac{d\varphi_i^I}{d\mu} \bigg|_{t=0} = \eta d(v, w)$ in the corresponding expression (53) for $(II)_2$. This accounts for the difference of $d(v, w)$ and $|\nabla v|$ in the two estimates. We obtain (99) by combining (101), (102) and (104) and Cauchy-Schwartz.
Finally, we estimate \((iii)\). We have

\[
(iii) := \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} \Box(V, v_t) \nabla v_t \cdot \nabla v_t \, d\mu
\]

\[
= \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \frac{d}{dt} \bigg|_{t=0} \Box(V, v_t) \nabla v \cdot \nabla v \, d\mu
\]

\[
+ 2 \int_{\mathcal{R}(u) \cap B_\sigma(x_0)} \Box(V, v) \frac{d}{dt} \bigg|_{t=0} \nabla v_t \cdot \nabla v \, d\mu
\]

\[
= (iii)_1 + (iii)_2. \tag{105}
\]

We derive an estimate for \((iii)_1\) in a similar way as in \((III)_1\) to account for the difference in the \(C^1\) estimates for \(\Box(V, v)\) from that of \(G_{12}(V, v)\). We obtain

\[
(iii)_1 := \int_{B_\sigma(x_0) \setminus S_j(u)} g^{\alpha \beta} \frac{\partial}{\partial v^i} \Box_{ij}(V, v) \frac{dv^l}{dt} \bigg|_{t=0} \frac{\partial v^i}{\partial x^\alpha} \frac{\partial v^j}{\partial x^\beta} \, d\mu
\]

\[
\leq C \int_{B_\sigma(x_0) \setminus S_j(u)} \left| \xi h_\alpha^i \frac{\partial v^l}{\partial x^\alpha} x^i \right| \|
abla v \|^2 \, d\mu
\]

\[
\leq C \sigma \int_{B_\sigma(x_0) \setminus S_j(u)} \xi \|
abla v \|^2 \, d\mu. \tag{106}
\]

(Note that again we used the Lipschitz property of \(v\) in order to bound one term of \(\|
abla v\|\).) Next, we derive an estimate for \((iii)_2\) in a similar way as in \((III)_2\) and \((ii)_2\) to account for the difference in the \(C^1\) estimates of \(\Box(V, v)\) and \(G_{12}(V, v)\). We obtain

\[
(iii)_2 \leq C \int_{B_\sigma(x_0)} \xi d^2(v, P_0) + C \sigma \int_{B_\sigma(x_0)} \|
abla v\|^2 \, d\mu. \tag{107}
\]

Combining inequalities (105), (106) and (107) proves (100) and finishes the proof. Q.E.D.

Lemma 46 implies the following analogue of the domain variation formula (2.3) of [GS].

Proposition 47 Let \(u = (V, v) : B_\sigma(x_*) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)\) be a harmonic map satisfying the assumptions of Section 5. There exist \(R_0 > 0\) and \(C > 0\)

63
such that for $x_0 \in S_j(u) \cap B_{\frac{r}{2}}(x_*)$ and $\sigma \in (0, R_0)$, we have

$$\frac{d}{d\sigma}E_{x_0}(\sigma) + \frac{2 - n + C\sigma}{\sigma} \geq \frac{2}{E_{x_0}(\sigma)} \int_{\partial B_{\sigma}(x_0)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma.$$

(108)

Furthermore, C depends only on the constant in the estimates (24)-(28) for the target metric G, the domain metric g and the Lipschitz constant of u.

Proof. We will write $E = E_{x_0}$ and $I = I_{x_0}$ for simplicity. By Lemma 46,

$$-\frac{d}{dt}igg|_{t=0} E(\sigma) \leq C \int_{B_{\sigma}(x_0)} \xi d^2(v, P_0) d\mu + C\sigma \int_{B_{\sigma}(x_0)} \xi |\nabla v|^2 d\mu.$$

As in [GS] p.192-193, after letting ξ approximate the characteristic function, we obtain

$$(2 - n + C\sigma)E(\sigma) + \sigma \int_{\partial B_{\sigma}(x_0)} |\nabla v|^2 d\Sigma - 2\sigma \int_{\partial B_{\sigma}(x_0)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma$$

$$\geq -C \int_{B_{\sigma}(x_0)} d^2(v, P_0) d\mu.$$

Combining the above with (73) and dividing by $\sigma E(\sigma)$, we obtain

$$\frac{E'(\sigma)}{E(\sigma)} + \frac{2 - n + C\sigma}{\sigma} \geq \frac{2}{E(\sigma)} \int_{\partial B_{\sigma}(x_0)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma - C\sigma \frac{I(\sigma)}{\sigma E(\sigma)}.$$

Proposition 37 asserts that there exists $R_0 > 0$ such that

$$-\sigma \frac{I(\sigma)}{\sigma E(\sigma)} \geq -2\sigma, \ \forall \sigma \in (0, R_0).$$

The assertion immediately follows from combining the above two inequalities. Q.E.D.
9 Order Function

The main result of this section is to prove the following existence property of the order for the singular component of a harmonic map.

Proposition 48 Let $u = (V, v) : (B_{\sigma_0}(x_\star), g) \rightarrow (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map satisfying the assumptions of Section 5. For $x \in \mathcal{S}_j(u) \cap B_{\frac{\sigma_0}{2}}(x_\star)$ and $0 < \sigma < \sigma_0 := \sup\{\sigma : B_{\sigma}(x) \subset B_{\sigma_0}(x_\star)\}$, assume that v is not constant in any neighborhood of x and define

$$\text{Ord}^v(x, \sigma) := \frac{\sigma E^v_x(\sigma)}{I^v_x(\sigma)}. \quad (109)$$

Then, there exist constants $C > 0$, $C_1 > 0$ and $R_0 > 0$ such that for any $x \in \mathcal{S}_j(u) \cap B_{\frac{\sigma_0}{2}}(x_\star)$, there exists a function $\sigma \mapsto J^v_x(\sigma)$ with the properties

$$e^{-C_1}\sigma I^v_x(\sigma) \leq J^v_x(\sigma) \leq I^v_x(\sigma)e^{C_1}\sigma, \quad \forall \sigma \in (0, R_0) \quad (110)$$

and

$$\sigma \mapsto e^{C_0}\sigma \frac{E^v_x(\sigma)}{J^v_x(\sigma)} \text{ is non-decreasing in } (0, R_0). \quad (111)$$

Thus,

$$\text{Ord}^v(x) := \lim_{\sigma \to 0} \text{Ord}^v(x, \sigma)$$

exists and

$$\text{Ord}^v(x) \leq e^{(C+C_1)}\sigma \frac{E^v_x(\sigma)}{I^v_x(\sigma)}, \quad \forall \sigma \in (0, R_0). \quad (112)$$

The constants C_1, C and R_0 can be chosen to depend continuously on x and to depend only on the constant in the estimates (24)-(28) for the target metric G, the domain metric g and the Lipschitz constant of u.

Proof. Fix $x \in \mathcal{S}_j(u)$. For notational simplicity, let $I(\sigma) = I^v_x(\sigma)$ and $E(\sigma) = E^v_x(\sigma)$. Recall (cf. [GS] p.193) the equality

$$\frac{I'(\sigma)}{I(\sigma)} = \int_{\partial B_{\sigma}(x)} \frac{\partial}{\partial r} d^2(v, P_0) d\Sigma + \frac{n-1 + O(\sigma^2)}{\sigma} \quad (113)$$
where \(O(\sigma) \) depends only on \(g \). Combining (113) with (108), we obtain

\[
\frac{I'(\sigma)}{I(\sigma)} - \frac{E'(\sigma)}{E(\sigma)} = \frac{1}{\sigma}
\]

(114)

\[
\leq \frac{E(\sigma) \int_{\partial B_\sigma(x)} \frac{\partial^2 d^2(v, P_0)}{\partial r} d\Sigma - 2I(\sigma) \int_{\partial B_\sigma(x)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma}{E(\sigma)I(\sigma)} + C.
\]

Now note that (113) implies

\[
\int_{\partial B_\sigma(x)} \frac{\partial}{\partial r} d^2(v, P_0)d\Sigma \leq I'(\sigma)
\]

for \(\sigma > 0 \) sufficiently small. Furthermore, Lemma 39 (cf. (73)) and Proposition 37 imply that

\[
\int_{B_\sigma(x)} d^2(v, P_0)d\mu \leq C(\sigma I(\sigma) + \sigma^2 E(\sigma)) \leq C\sigma^2 E(\sigma)
\]

(115)

for \(\sigma > 0 \) sufficiently small. Thus, Proposition 35 implies that

\[
E(\sigma) \int_{\partial B_\sigma(x)} \frac{\partial}{\partial r} d^2(v, P_0)d\Sigma - 2I(\sigma) \int_{\partial B_\sigma(x)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma
\]

\[
\leq \frac{1}{2} \left(\int_{\partial B_\sigma(x)} \frac{\partial}{\partial r} d^2(v, P_0)d\Sigma + C \int_{B_\sigma(x)} d^2(v, P_0)d\mu \right)
\]

\[
\times \left(\int_{\partial B_\sigma(x)} \frac{\partial}{\partial r} d^2(v, P_0)d\Sigma \right) - 2I(\sigma) \int_{\partial B_\sigma(x)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma
\]

\[
\leq 2I(\sigma) \int_{\partial B_\sigma(x)} \left| \frac{\partial}{\partial r} d^2(v, P_0) \right|^2 d\Sigma - 2I(\sigma) \int_{\partial B_\sigma(x)} \left| \frac{\partial v}{\partial r} \right|^2 d\Sigma + C \sigma^2 E(\sigma)I'(\sigma).
\]

(116)

Combining (114) with (116), we conclude that there exists \(R_0 > 0 \) such that

\[
0 \leq \frac{E'(\sigma)}{E(\sigma)} + \frac{1}{\sigma} - (1 - C\sigma^2) \frac{I'(\sigma)}{I(\sigma)} + C, \quad \text{for a.e. } \sigma \in (0, R_0).
\]

(117)

Note that \(C \) and \(R_0 \) depend only on the constant in the estimates (24)-(28) for the target metric \(G \), the domain metric \(g \) and the Lipschitz constant of \(u \), and thus can be chosen to depend continuously on \(x \).
Inequality (117) was first considered in [Me] formula (15) and subsequently in [DM1] formula (3.22). The existence of the limit follows as a special case of [DM1] Corollary 3.1. Note that since v is Lipschitz, we have by [GS] p. 200-201 that in the definition of the order we can take $I(\sigma) = I(\sigma, v(0))$ instead of $I(\sigma, Q_\sigma)$. Therefore, if we set

$$J_x(\sigma) = I(\sigma) \exp \left(C \int_0^\sigma s^2 \frac{d}{ds} \log I(s) ds \right)$$

(note that the error terms in [DM1] are $O(\sigma)$ and not $O(\sigma^2)$, and this accounts for the difference in the definition of $J(\sigma)$), then (110) follows from [DM1] formula 3.32 and (111) follows from [DM1] Lemma 3.7. Inequality (112) follows immediately from (110) and (111). Q.E.D.

Remark 49 The above Proposition works in great generality, and it implies that if a Lipschitz map satisfies the domain, the target variation formulas and the lower order bound, then it also satisfies the monotonicity formula (117) and has a well defined order. Formulas (110) - (112) follow as a formal consequence of (117).

Let $x_0 \in S_j(u) \cap B_{\frac{2}{\sigma}}(x_*)$ and assume $x_i = x_0$ for all i in (78) and that v is not constant in any neighborhood of x_0. Then Proposition 48 implies that the quantity $\frac{\sigma E_{v_0}(\sigma)}{I_{\sigma_0}(\sigma)}$ is bounded above for $\sigma > 0$ small. Hence, there exists a sequence of blow up maps v_i converging to a harmonic map v_0 by Lemma 43.

Definition 50 The harmonic map $v_0 : (B_1(0), \delta) \to Y_0$ above is called a **tangent map of** v at x_0.

Lemma 51 Let $u = (V, v) : (B_{\sigma_0}(x_*), g) \to (\mathbb{R}^j \times Y_0^{k-j}, d_G)$ be a harmonic map satisfying assumptions of Section 5. If v_0 is a tangent map of v at $x_0 \in S_j(u) \cap B_{\frac{2}{\sigma}}(x_*)$, then v_0 is a homogeneous map and $\text{Ord}_{v_0}(0) = \text{Ord}_v(x_0)$.

Proof. Assume on the contrary that v_0 is not a homogeneous map. By [GS] Lemma 3.2 (by replacing the Riemannian simplicial complex by an arbitrary NPC target space) there exists $R \in (0, 1)$ sufficiently small such that

$$\text{Ord}_{v_0}(x_0) < \frac{r E_{v_0}(r)}{I_{v_0}(r)}, \quad \forall r \in [R, 1].$$

(118)
For each σ_i, we choose $r_i \in (R, \frac{R+1}{2})$ such that

$$
\int_{\partial B_{r_i\sigma_i}(x_0)} |\nabla v|^2 d\Sigma \leq \frac{2}{(1-R)\sigma_i} \int_{B_{\sigma_i}(x_0)} |\nabla v|^2 d\mu \leq \frac{C}{\sigma_i} E^v(\sigma_i).
$$

(119)

Here and henceforth, C will denote an arbitrary constant that is independent of i. Now note that the map v is not a competitor of the harmonic map σ, w in the domain $B_{r_i\sigma_i}(x_0)$ because σ, w does not necessarily agree with v on $\partial B_{r_i\sigma_i}(x_0)$. Therefore, we “bridge” the gap between v and σ, w using [KS2]. Lemma 3.12 to define a map σ, \bar{w} with the same boundary value as v. More precisely, for $\rho > 0$ small, we let $F : B_{r_i\sigma_i-\rho}(x_0) \rightarrow B_{r_i\sigma_i}(x_0)$ be the scaling map $F(x) = x_0 + \frac{r_i\sigma_i}{r_i\sigma_i-\rho}(x - x_0)$ and set

$$
\tilde{v}(x) = \begin{cases}
v \circ F(x) & \text{for } x \in B_{r_i\sigma_i-\rho}(x_0), \\
W(x) & \text{for } x \in B_{r_i\sigma_i}(x_0) \setminus B_{r_i\sigma_i-\rho}(x_0)
\end{cases}
$$

where

$$
W : B_{r_i\sigma_i}(x_0) \setminus B_{r_i\sigma_i-\rho}(x_0) \simeq \partial B_{r_i\sigma_i}(x_0) \times [0, \rho] \rightarrow Y^{k-j}
$$

(120)

is the interpolation map between $\sigma, w|_{\partial B_{r_i\sigma_i}(x_0)}$ and $v|_{\partial B_{r_i\sigma_i}(x_0)}$

$$
W(y, s) = (1 - \frac{s}{\rho})v(y) + \frac{s}{\rho} \sigma, w(y).
$$

Thus, $W = v \circ F$ on $\partial B_{r_i\sigma_i-\rho}(x_0)$ and $W = \sigma, w$ on $\partial B_{r_i\sigma_i}(x_0)$. The energy of \tilde{v} is close to that of v inside the ball $B_{r_i\sigma_i}(x_0)$; more precisely, since $\tilde{v}|_{B_{r_i\sigma_i-\rho}(x_0)}$ and $v|_{B_{r_i\sigma_i}(x_0)}$ differ only by scaling, we can bound the difference by

$$
E^v(r_i\sigma_i) - E^v(r_i\sigma_i)
$$

(121)

$$
\leq \left(\frac{r_i\sigma_i}{r_i\sigma_i-\rho} \right)^2 E^v(r_i\sigma_i) - E^v(r_i\sigma_i) + E^W \leq \frac{C \rho}{\sigma_i} E^v(r_i\sigma_i) + E^W
$$

provided ρ small compared to σ_i (in fact, later we set $\rho = \sigma_i^2$). Furthermore, by [KS2] (3.23)

$$
E^W \leq \frac{C \rho}{2} \int_{\partial B_{r_i\sigma_i}(x_0)} |\nabla v|^2 + |\nabla \sigma, w|^2 d\Sigma + \frac{C}{\rho} \int_{\partial B_{r_i\sigma_i}(x_0)} d^2(v, \sigma, w) d\Sigma
$$

(122)

68
(The constant \(C \) comes from the fact that the metric in the annulus does not correspond with the product metric via (120)). By the Lipschitz estimate [KS1] Theorem 2.4.6 applied to \(\sigma_i w \), we obtain

\[
|\nabla \sigma_i w|^2 \leq \frac{C}{\sigma_i^2} E^u(\sigma_i) \quad \text{in } B_{1+R}(x_0).
\]

Applying (119) and (123) in (122), we obtain

\[
E^W \leq \frac{C\rho}{\sigma_i} E^v(\sigma_i) + \frac{C}{\rho} \int_{\partial B_{r_i}(x_0)} d^2(v, \sigma_i w) d\Sigma.
\]

The fact that \(\bar{v} \) is a competitor for \(\sigma_i w \), (121) and (124) imply

\[
E^{\sigma_i w}(r_i \sigma_i) - E^v(r_i \sigma_i)
\]

\[
\leq E^{\sigma_i w}(r_i \sigma_i) - E^\bar{v}(r_i \sigma_i) + E^\bar{v}(r_i \sigma_i) - E^v(r_i \sigma_i)
\]

\[
\leq \frac{C\rho}{\sigma_i} E^v(\sigma_i) + CE^W
\]

\[
\leq \frac{C\rho}{\sigma_i} E^v(\sigma_i) + \frac{C}{\rho} \int_{\partial B_{r_i}(x_0)} d^2(v, \sigma_i w) d\Sigma.
\]

Thus, by rescaling and applying Proposition 42 and the uniform bound \(E^{v^*}(1) \leq 2\alpha \), we obtain

\[
E^{w^*_i}(r_i) - E^{v^*_i}(r_i) \leq \frac{C\rho}{\sigma_i} E^{v^*_i}(1) + \frac{C\sigma_i}{\rho} \int_{\partial B_{r_i}(x_0)} d^2(v_{\sigma_i}, w_{\sigma_i}) d\Sigma
\]

\[
\leq \frac{C\rho}{\sigma_i} + \frac{C\sigma_i^3}{\rho}.
\]

Thus, by choosing \(\rho = \sigma_i^2 \), we have

\[
E^{w^*_i}(r_i) - E^{v^*_i}(r_i) \leq C\sigma_i,
\]

We can similarly define

\[
\sigma_i \bar{w}(x) = \begin{cases}
\sigma_i w \circ F(x) & \text{for } x \in B_{r_i\sigma_i}(x_0), \\
\overline{W}(x) & \text{for } x \in B_{r_i\sigma_i}(x_0) \backslash B_{r_i\sigma_i - \rho}(x_0)
\end{cases}
\]

where \(\overline{W} \) is the interpolation map between \(\sigma_i w \) and \(v \) so that \(\overline{W} = \sigma_i w \circ F \) on \(\partial B_{r_i\sigma_i - \rho}(x_0) \) and \(\overline{W} = v \) on \(\partial B_{r_i\sigma_i}(x_0) \). The energy of \(\hat{u} = (V, \sigma_i w) \) is close
to that of $\bar{u} = (V, \sigma_i \bar{w})$ inside the ball $B_{r_i \sigma_i}$; more precisely, we can bound the difference using Lemma 24 by

$$E^{\bar{u}}(r_i \sigma_i) - E^{\bar{u}}(r_i \sigma_i) \leq \left(\frac{r_i \sigma_i}{r_i \sigma_i - \rho} \right)^2 E^{\sigma_i w}(r_i \sigma_i) - E^{\sigma_i w}(r_i \sigma_i) + E^{\bar{W}} + C \int_{B_{r_i \sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu$$

$$\leq \frac{C \rho}{\sigma_i} E^{\sigma_i w}(r_i \sigma_i) + \rho \int_{B_{r_i \sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu.$$

Integrating inequality (74) over $B_{r_i \sigma_i}(x_0)$ and using the fact that \bar{u} is a competitor for the harmonic map u, we obtain

$$E^{u}(r_i \sigma_i) - E^{\sigma_i w}(r_i \sigma_i) \leq E^{u}(r_i \sigma_i) - E^{\bar{u}}(r_i \sigma_i) + C \int_{B_{r_i \sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu$$

$$\leq E^{u}(r_i \sigma_i) - E^{\bar{u}}(r_i \sigma_i) - E^{\bar{u}}(r_i \sigma_i) - E^{\bar{u}}(r_i \sigma_i) + C \int_{B_{r_i \sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu$$

$$\leq \frac{C \rho}{\sigma_i} E^{\sigma_i w}(r_i \sigma_i) + C E^{\bar{W}} + C \int_{B_{r_i \sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu.$$

We can bound E^{W} in an analogous way as E^{W}, hence by scaling, applying Lemma 39 and Lemma 40, noting that $E^{w_i}(1) \leq E^{\sigma_i}(1) \leq 2\alpha$ and letting $\rho = \sigma_i^2$, we obtain

$$E^{w_i}(r_i) - E^{w_{\sigma_i}}(r_i) \leq \frac{C \rho}{\sigma_i} + 2C \sigma_i^3 + C \int_{B_{\sigma_i}(x_0)} d^2(v, P_0) + d^2(\sigma_i w, P_0) d\mu$$

$$\leq \frac{C \rho}{\sigma_i} + 2C \sigma_i^3 + C \sigma_i$$

$$\leq C \sigma_i. \quad (127)$$

Combining (125) and (127),

$$|E^{v_{\sigma_i}}(r_i) - E^{w_{\sigma_i}}(r_i)| \leq C \sigma_i, \quad (128)$$

70
and we can deduce
\[
\frac{r_i(E^{w_i}(r_i) - C\sigma_i)}{I^{w_i}(r_i)} \leq \frac{r_iE^{w_i}(r_i)}{I^{w_i}(r_i)} \leq \frac{r_i(E^{w_i}(r_i) + C\sigma_i)}{I^{w_i}(r_i)}.
\]

(129)

By taking a subsequence if necessary, we can assume \(r_i \to r_0 \in [R, \frac{R+1}{2}] \).
Recall that \(w_{\sigma_i} \) is a sequence of harmonic maps with uniformly bounded Lipschitz constant in \(B_{R+1}(0) \) (cf. (123)). Thus, \(I^{w_i}(r_i) \to I^{v_0}(r_0) \) and \(E^{w_i}(r_i) \to E^{v_0}(r_0) \) by [KS2] Proposition 3.7 and Theorem 3.11. Furthermore, \(I^{v_i}(r_i) \to I^{v_0}(r_0) \) by Proposition 42. Therefore
\[
\lim_{i \to \infty} \frac{r_i(E^{w_i}(r_i) \pm C\sigma_i)}{I^{w_i}(r_i)} = \lim_{i \to \infty} \left(\frac{I^{v_i}(r_i) r_iE^{w_i}(r_i)}{I^{w_i}(r_i)} \pm \frac{C r_i \sigma_i}{I^{w_i}(r_i)} \right)
\]
\[
= \lim_{i \to \infty} \frac{r_iE^{w_i}(r_i)}{I^{w_i}(r_i)}
\]
\[
= \lim_{i \to \infty} \frac{r_i \sigma_i E^{v}(r_i \sigma_i)}{I^{v}(r_i \sigma_i)}
\]
\[
= \text{Ord}^v(x_0),
\]

and we conclude by taking limits as \(i \to \infty \) of (129) that
\[
\text{Ord}^v(x_0) = \frac{r_0 E^{v_0}(r_0)}{I^{v_0}(r_0)}.
\]

(130)

This contradicts (118), thereby proving that \(v_0 \) is a homogeneous map.
Q.E.D.

The following are Corollaries of Proposition 48.

Corollary 52 Let \(u = (V, v) : (B_{\sigma_*}(x_*), g) \to (\mathbb{R}^j \times Y, d_G) \) be a harmonic map satisfying the assumptions of Section 5. If \(v \equiv P_0 \) on any open subset of \(B_{\sigma_*}^+(x_*), \) then \(v \equiv P_0 \) in \(B_{\sigma_*}^+(x_*). \)

Proof. If \(v \) is not constant in \(B_{\sigma_*}^+(x_*), \) but identically equal to \(P_0 \) on an open subset of \(B_{\sigma_*}^+(x_*), \) then there exists a ball \(B \subset B_{\sigma_*}^+(x_*). \) such that \(v \equiv P_0 \) in the interior of \(B, \) but for some \(x_0 \in \partial B, \) \(v \) is not constant in any neighborhood of \(x_0. \) Let \(v_0 : B_1(0) \to Y \) be the tangent map of \(v \) at \(x_0. \) Then \(v_0 \) is identically constant on half of \(B_1(0) \) and this contradicts Proposition 3.4 of [GS].
Q.E.D.
Corollary 53 Let $u = (V, v): (B_{\sigma}(x_*), g) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map satisfying the assumptions of Section 5. Then, there exists $A > 0$ such that for $x \in S_j(u) \cap B_{\sigma}(x_*)$, we have

$$\text{Ord}^v(x) \leq A.$$

Proof. Since

$$\int_{\sigma}^{\sigma_0} d\frac{ds}{ds} \log I^v_x(s)ds = \sigma_0 \log I^v_x(\sigma_0) - \sigma \log I^v_x(\sigma) - \int_{\sigma}^{\sigma_0} \log I^v_x(s)ds,$$

the map $x \mapsto J_x(\sigma)$ is a continuous map and $J_x(\sigma) \neq 0$. Thus the map $x \mapsto \frac{\sigma E^v_x(\sigma)}{J_x(\sigma)}$ is continuous, and the result follows from the fact that a non-increasing limit of continuous functions is upper semicontinuous. Q.E.D.

Corollary 54 Let $u = (V, v): (B_{\sigma}(x_*), g) \to (\mathbb{R}^j \times Y_2^{k-j}, d_G)$ be a harmonic map satisfying the assumptions of Section 5. Then there exist $C > 0$ and $R_0 > 0$ such that for any $x \in S_j(u) \cap B_{\sigma}(x_*)$, we have

$$\sigma \mapsto e^{C\sigma \frac{I^v_x(\sigma)}{\sigma^{n-1+2\alpha}}} \text{ and } \sigma \mapsto e^{C\sigma \frac{E^v_x(\sigma)}{\sigma^{n-2+2\alpha}}}$$

are monotone non-decreasing in $(0, R_0)$. The constants C_1, C and R_0 can be chosen to depend continuously on x and depend only on the constant in the estimates (24)-(28) for the target metric G, the domain metric g and the Lipschitz constant of u.

Proof. Let $I(\sigma) = I^v_x(\sigma)$, $E(\sigma) = E^v_x(\sigma)$ and $J(\sigma) = J_x(\sigma)$. Combining Proposition 35 with (115) and Corollary 53, we obtain

$$2E(\sigma) \leq \int_{\partial B_\sigma(x)} \frac{\partial}{\partial r} d^2(v, P_0)d\mu + \sigma I(\sigma) + C\sigma E(\sigma)$$

$$\leq I'(\sigma) - \frac{n-1}{\sigma} I(\sigma) + CI(\sigma).$$

Since Proposition 48 implies

$$e^{-C\sigma} \alpha I(\sigma) \leq e^{-C\sigma} \alpha J(\sigma) \leq \sigma E(\sigma), \quad \forall \sigma \in (0, R_0),$$

72
we obtain

\[2\alpha I(\sigma) \leq \sigma I'(\sigma) - (n - 1)I(\sigma) + C\sigma I(\sigma), \quad \forall \sigma \in (0, R_0). \]

In the above the constant \(C \) depends as before on the constant in the estimates (24)-(28) for the target metric \(G \), the domain metric \(g \) and the Lipschitz constant of \(u \). By rearranging, we obtain

\[\frac{d}{d\sigma} \log \left(\frac{I(\sigma)}{\sigma^{n-1+2}} \right) = \frac{I'(\sigma)}{I(\sigma)} - \frac{n-1+2\alpha}{\sigma} \geq -C, \quad \forall \sigma \in (0, R_0) \]

Combining this with inequality (117), we obtain

\[\frac{d}{d\sigma} \log \left(\frac{E(\sigma)}{\sigma^{n-2+2}} \right) = \frac{E'(\sigma)}{E(\sigma)} - \frac{n-2+2\alpha}{\sigma} \geq -C, \quad \forall \sigma \in (0, R_0). \]

The above two inequalities immediately imply the assertion of the Corollary.
Q.E.D.

10 The Gap Theorem

First recall the \(\epsilon \)-gap Theorem 6.3 of [GS] which states that if \(X \) is a F-connected complex and \(K \) a bounded subset of \(X \), then there exists \(\epsilon_0 > 0 \) such that for any harmonic map \(u : (B_1(0), g) \to X \) with \(u(B_1(0)) \subset K \), either

\[\text{Ord}^u(0) = 1 \text{ or } \text{Ord}^u(0) \geq 1 + \epsilon_0. \quad (131) \]

This gap property also holds for a DM-complex.

Theorem 55 If \((Y,d_G) \) is a NPC DM-complex, \(K \) is a bounded subset of \(Y \), there exists \(\epsilon_0 > 0 \) depending only on \(K \) and \(n \) such that for any harmonic map \(u : (B_1(0), g) \to (Y,d_G) \) with \(u(0) \subset K \),

\[\text{Ord}^u(0) = 1 \text{ or } \text{Ord}^u(0) \geq 1 + \epsilon_0. \]

Proof. On the contrary, assume there exists a sequence of harmonic maps \(\{u_i\} \) with \(u_i(0) \subset K \) and

\[1 < \text{Ord}^{u_i}(0) < 1 + \frac{1}{i}. \quad (132) \]
Let \(u_{i\sigma} \) be the \(\sigma \)-blow up map of \(u_i \). By the monotonicity properties of \(u \), we can choose \(\sigma_i \to 0 \) such that

\[
E^{u_{i\sigma_i}}(1) < 1 + \frac{1}{i} \text{ and } I^{u_{i\sigma_i}}(1) = 1.
\]

Since \(\mathcal{K} \) is compact, there is only a finite number of homeomorphism types that appear as tangent cones at \(P \in \mathcal{K} \). Hence, we can assume that \(u_{i\sigma_i} \) maps into a single cone, i.e.

\[
u_{i\sigma_i} = (V_i, v_i) : B_1(0) \to (\mathbb{R}^j \times Y_2^{k-j}, G_i).
\]

Here, the metric \(G_i \) is the appropriate blow up metric at \(u_i(0) \) as in (9). We may also assume (by taking a subsequence if necessary) that \(u_i(0) \to Q_0 \in \mathcal{K} \).

Since \(G \) is a smooth metric up to its boundary on each simplex and \(\sigma_i \to 0 \), \(G_i \) converges smoothly to a Euclidean metric \(G_0 \). Finally, we may assume that \(j \) is the maximal integer such that \(u_{i\sigma_i} \) can be represented in the above form; i.e. there does not exist \(j' > j \) and \(\sigma \in (0, 1] \) such that \(u_{i\sigma_i}|_{B_r(0)} \) maps into a cone \(\mathbb{R}^{j'} \times Z^{k-j'} \). Let \(u_{i*} = (V_{i*}, v_{i*}) \) be a tangent map of \(u_i \) at 0. Here, \(V_{i*} : B_1(0) \to \mathbb{R}^j \) is a harmonic map into Euclidean space. Since \(1 < \text{Ord}_{u_{i*}}(0) = \text{Ord}_{u_i}(0) < 1 + \frac{1}{i} \), we conclude that \(V_{i*} \equiv 0 \).

The maps \(\{u_{i\sigma_i}\} \) are uniformly Lipschitz with respect to \(G_0 \) and the energy of \(u_{i\sigma_i} \) with respect to \(G_0 \) is within \(\epsilon_i \) of minimizing where \(\epsilon_i \to 0 \) as \(i \to \infty \). Thus, (after taking a subsequence if necessary) we can assume that \(u_{i\sigma_i} \) converges locally uniformly to a non-constant harmonic map \(u_0 = (V_0, v_0) : B_1(0) \to (\mathbb{R}^j \times Y_2^{k-j}, G_0) \) and the energy of \(u_{i\sigma_i}|_{B_r(0)} \) converges to that of \(u_0|_{B_r(0)} \) for all \(r \in (0, 1) \) (cf. [KS2] Theorem 3.11). Thus,

\[
\frac{rE^{u_{i*}}(r)}{I^{u_{i*}}(r)} = \lim_{i \to \infty} \frac{rE^{u_{i\sigma_i}}(r)}{I^{u_{i\sigma_i}}(r)} = 1, \quad \forall r \in (0, 1).
\]

This implies that \(u_0 = (V_0, v_0) \) is a homogeneous map of degree 1 (cf. [GS] Lemma 3.2). We claim that \(v_0 \) is a constant map. Indeed, if \(v_0 \) is not a constant, then \(v_0 \) is effectively contained a subcomplex \(\mathbb{R}^l \times Y_3^{k-j-l} \) of \(\mathbb{R}^j \times Y_2^{k-j} \) (cf. [GS] Proposition 3.1 and Lemma 6.2). By [GS] Theorem 5.1, there exists \(r_0 > 0 \) such that \(u_{i\sigma_i}(B_{r_0}(0)) \subset \mathbb{R}^{j+l} \times Y_3^{k-j-l} \) for \(i \) sufficiently large. This contradicts the maximality of \(j \) proving the claim. Since \(v_0 \) is a constant map, \(V_0 \) is a non-constant map. The proof of Lemma 44 implies that the
$C^{1,3}$ norm of V_i is uniformly bounded in $B_{\frac{1}{2}}(0)$. Hence (by Arzela-Ascoli and taking a subsequence if necessary), we may assume that $\frac{\partial V_i}{\partial x^\alpha}$ converges to $\frac{\partial V_0}{\partial x^\alpha}$. Thus, V_i is not a constant map for sufficiently large i, a contradiction to the conclusion in the previous paragraph. Q.E.D.

As a consequence of Theorem 55, we have the following

Proposition 56 If $u : (\Omega, g) \to (Y,d_G)$ is a harmonic map from a Riemannian domain into a DM-complex and $u = (V,v) : (B_\sigma(x_*),g) \to (\mathbb{R}^j \times Y_2^{k-j},d_G)$ a local representation as in (16), then there exists $\epsilon_0 > 0$ such that

$$\text{Ord}^u(x_0) \geq 1 + \epsilon_0, \ \forall x_0 \in \mathcal{S}_0(u) \cap B_{\frac{1}{2}}(x_*)$$

and

$$\dim_H \left(\mathcal{S}_0(u) \cap B_{\frac{1}{2}}(x_*) \right) \leq n - 2.$$

Proof. By the interior Lipschitz continuity of u, we can choose a bounded set K such that $u(B_{\frac{1}{2}}(x_*)) \subset K$. The first assertion follows from Theorem 55. A tangent map u_* of u maps into an F-connected complex, so $\dim (\mathcal{S}_0(u_*)) \leq n - 2$ by [GS] Theorem 6.4. Combining this with the first assertion, we can apply Theorem 71 of Appendix 2 with $\mathcal{S} := \mathcal{S}_0(u) \cap B_{\frac{1}{2}}(x_*)$ to prove the second assertion. Q.E.D.

Additionally, we need an analogous statement for the singular component map.

Proposition 57 Under the same assumptions as in Proposition 56 and under the assumptions of Section 5, there exists $\epsilon_0 > 0$ such that

$$\text{Ord}^v(x_0) \geq 1 + \epsilon_0, \ \forall x_0 \in \mathcal{S}_j(u) \cap B_{\frac{1}{2}}(x_*)$$

and

$$\dim_H \left(\mathcal{S}_j(u) \cap B_{\frac{1}{2}}(x_*) \right) \leq n - 2.$$

Proof. As before choose a bounded set K such that $u(B_{\frac{1}{2}}(x_*)) \subset K$. The proof closely follows that of Theorem 55, and we assume to the contrary that there exists a sequence of points $x_i \in \mathcal{S}_j(u) \cap B_{\frac{1}{2}}(x_*)$ such that

$$1 < \text{Ord}^v(x_i) < 1 + \frac{1}{i}.$$
On the other hand, the proof here differs from that of Theorem 55 in that instead of using a σ_i-blow up map of u_i (as done in Theorem 55), we use the σ_i-blow up map $v_i := v_{\sigma_i, x_i}$ and the σ_i-approximate harmonic blow up map $w_i = w_{\sigma_i, x_i}$ of v at x_i (cf. Definition 38). Indeed, by Proposition 48, we can choose $\sigma_i \to 0$ such that

$$\mathcal{E}(w_i(1)) \leq \mathcal{E}(v_i(1)) < 1 + \frac{1}{i}$$

and, \(\int_{\partial B_i(0)} d^2(w_i, P_0) d\Sigma_i = 1\).

We can thus argue as in the proof of Theorem 55 to obtain a homogeneous degree 1 harmonic map $v_0 : B_1(0) \to (Y_k^{k-j}, d_h)$ into a F-connected complex as a limit (under uniform convergence on compact sets) of the sequence \(\{w_i\}\), and hence of \(\{v_i\}\) (by Proposition 42). Furthermore, the space \((Y_k^{k-j}, d_h)\) is essentially regular by [GS] Theorem 6.3. Therefore, if $\text{Ord}^v(0) = 1$ then applying Proposition 60 of Appendix 1 with $l = v_0$, we conclude that for any i sufficiently large

$$\sup_{B_i(0)} d(v_i, P_0) > \lambda s$$

for $s > 0$ sufficiently small.

Fix $i > 0$ sufficiently large and identify $x_i = 0$. We then have

$$\sup_{B_i(0)} d(v(\sigma_i x), P_0) > \lambda \mu_{\sigma_i} s$$

for $s > 0$ sufficiently small.

By the monotonicity property of the harmonic map u, we then have for $\sigma > 0$ sufficiently small,

$$\mu_{\sigma \sigma_i}^{-1} d(v(\sigma \sigma_i x), P_0) > \mu_{\sigma \sigma_i}^{-1} \lambda \mu_{\sigma_i} \sigma$$

$$= \lambda \frac{\mu_{\sigma_i}}{\sigma_i} \sqrt{\frac{(\sigma \sigma_i)^{n+1}}{I_u(\sigma \sigma_i)}}$$

$$\geq \lambda \frac{\mu_{\sigma_i}}{\sigma_i} \sqrt{\frac{1}{e^{c I_u(1)}}}.$$

Thus, there exists a tangent map $u_0 = (V_0, v_0)$ of u at x_i and a sequence $\sigma_i \to 0$ such that by replacing σ by σ_i in the above inequality, we obtain

$$d(v_0(x), P_0) \geq \lambda \frac{\mu_{\sigma_i}}{\sigma_i} \sqrt{\frac{1}{e^{c I_u(1)}}} > 0.$$
which contradicts Lemma 20 and the fact that $x_i \in S_j(u)$. We can thus conclude that there exists $\epsilon_0 > 0$ such that $\text{Ord}^u(x_0) \geq 1 + \epsilon_0$ for $x_0 \in S_j(u) \cap B_{2_2}(x_*)$.

For the second assertion, let $S := S_j(u) \cap B_{2_2}(x_*)$. The map v and the set S satisfy Properties (P1)-(P3) of Appendix 2. Indeed, Proposition 48 implies that (P1) holds. Property (P2) asserts the existence of blow-up maps and approximating harmonic blow up maps for v as in Definition 38 and the required convergence $d(v_{\sigma_i}, w_{\sigma_i}) \to 0$ is established in Proposition 42. Moreover, as required in (P3), formula (128) holds. Proposition 57 implies that the order gap property in Appendix 2 is satisfied. Since a tangent map v_0 is a harmonic map into an F-connected complex, [GS] Theorem 6.4 implies that v satisfies the codimension 2 property of the tangent map with respect to S as in Theorem 71 of Appendix 2. Thus, the first assertion and Theorem 71 implies $\dim_H \left(S_j(u) \cap B_{2_2}(x_*) \right) \leq n - 2$. Q.E.D.

11 Proof of Theorems 1 - 4

We now turn to the proof of Theorem 1. Fix a $j \in \{k_0, \ldots, 1\}$ and let $u = (V, v) : (B_{\sigma_2}(x_*), g) \to (R^j \times Y_{2}^{-j}, d_G)$ be a local representation of a harmonic map into a DM-complex (cf. (16)). Define the following:

Statement 1$[j]$: $\dim_H \left(S(u) \cap B_{2_2}(x_*) \right) \leq n - 2$.

Statement 2$[j]$: For $q \in [1, 2)$ sufficiently close to 2 and any compactly contained subdomain Ω of $B_{2_2}(x_*)$, there exists a sequence of smooth functions $\{\psi_i\}$ with $\psi_i \equiv 0$ in a neighborhood of $S(u) \cap \overline{\Omega}$, $0 \leq \psi_i \leq 1$, $\psi_i \to 1$ for all $x \in \Omega \setminus S(u)$ such that

$$\lim_{i \to \infty} \int_{B_{2_2}(x_*)} |\nabla u| |\nabla \psi_i| \, d\mu = 0 \quad (133)$$

$$\lim_{i \to \infty} \int_{B_{2_2}(x_*)} |\nabla u| |\nabla \psi_i|^q \, d\mu = 0 \quad (134)$$
and
\[
\lim_{i \to \infty} \int_{B_{\sigma^i}(x_*)} |\nabla \nabla u| |\nabla \psi_i| \, d\mu = 0. \tag{135}
\]

Our strategy is to prove Statement 1\([j]\) for all \(j \in \{k_0 + 1, \ldots, 1\}\) which immediately proves Theorem 1. Similarly Statement 2\([j]\) for all \(j \in \{k_0 + 1, \ldots, 1\}\) proves Theorem 2. We proceed with backwards induction on \(j\). In order to use the results of the previous sections, we have to satisfy all the Assumptions of Section 5 and thus we have to prove both statements at the same time. The initial step is the case when \(j = k_0 + 1\). Since \(S_{k_0+1}(u) = \emptyset\), Proposition 56 immediately implies Statement 1\([k_0 + 1]\). Furthermore, using order gap property for \(u\) asserted in Proposition 56, we can apply the same proof as in [GS] Lemma 6.4 (with \(S\) replaced by \(S_0(u)\)) to prove Statement 2\([k_0 + 1]\).

For the inductive step when \(j \in \{k_0, \ldots, 1\}\), we assume that Statement 1\([j + 1]\) and Statement 2\([j + 1]\) hold. Now, the assumptions of Section 5 are always satisfied except Assumption 2 (ii) and Assumption 4. However, by combining Statement 1\([j + 1]\) and Proposition 56 we obtain that Assumption 2 (ii) holds. Furthermore, by combining Statement 2\([j + 1]\) and a partition of unity argument Assumption 4 also holds.

Under these assumptions, we now verify Statement 1\([j]\) and Statement 2\([j]\).

Proof of Statement 1\([j]\). Proposition 56, Proposition 57 and Statement 1\([j + 1]\) immediately imply Statement 1\([j]\]. Q.E.D.

Proof of Statement 2\([j]\). Let \(\epsilon_0 > 0\) be smaller than either of the \(\epsilon_0\) that appears in Proposition 56. Choose constants \(q < 2\), \(p > 2\), \(\delta > 0\) and \(D > 0\) satisfying the properties that \(q < 2\) is sufficiently close to 2 such that the assertion of Assumption 4 holds and such that
\[
\frac{1}{p} + \frac{1}{q} = 1, \quad D < \delta < \epsilon_0,
\]

\[-2 + D < -q - q\delta \quad \text{and} \quad -2 + D < -p - p\delta + \epsilon_0. \tag{136}\]
Let \(\Omega\) be a subdomain compactly contained in \(B_{2^x}(x_*)\) and let \(\Omega_2\) be such that \(\Omega \subset \subset \Omega_2 \subset \subset B_{2^x}(x_*)\). Proposition 57 implies that \(|\nabla v|(x) = 0\) for
$x \in S_j(u)$. Since any point in $S_j(u)$ is of order 1, $|\nabla u|(x) \neq 0$ for $x \in S_j(u)$. Hence, $|\nabla V|(x) \neq 0$ for $x \in S_j(u)$. Since ∇V is Hölder continuous (by Lemma 44 and Sobolev embedding), this implies that there exists a neighborhood $\mathcal{N} \subset \Omega_2$ of $S_j(u) \cap \overline{\Omega}$ and a constant λ_0 such that

$$|\nabla V| \geq \lambda_0 > 0 \text{ on } \mathcal{N}. \quad (137)$$

Below, we will use C to denote any generic constant that depends only on λ_0, the dimension of n of the domain, the Lipschitz constant of u in Ω_2 and the $W^{1,p}$ norm of V.

Fix $i \in \mathbb{N}$. Statement 1$[j]$ implies that we can choose a finite covering $\{B_{r_J}(x_J) : J = 1, \ldots, l\}$ of the compact set $S_j(u) \cap \overline{\Omega}$ satisfying

$$\sum_{J=1}^l s_J^{n-2+D} < \frac{1}{i}. \quad (138)$$

By choosing $x_J \in S_j(u) \cap \overline{\Omega}$ and r_J's sufficiently small, we can also assume $B_{3r_J}(x_J) \subset \mathcal{N}$. \quad (139)

Let φ_J be a smooth function such that $\varphi_J \equiv 0$ on $B_{r_J}(x_J)$, $\varphi_J \equiv 1$ on $\Omega \setminus B_{2r_J}(x_J)$, $|\nabla \varphi_J| \leq C r_J^{-1}$ and $|\nabla \nabla \varphi_J| \leq C r_J^{-2}$. Define φ by setting

$$\varphi = \prod_{J=1}^l \varphi_J.$$

Thus, $\varphi \equiv 0$ in a neighborhood of $S_j(u) \cap \overline{\Omega}$, $\varphi \equiv 1$ outside $\bigcup_{J=1}^l B_{2r_J}(x_J)$ and $0 \leq \varphi \leq 1$. Let $\Omega_0 := \Omega \setminus \bigcup_{J=1}^l B_{r_J}(x_J)$.

We also define ρ_J to be a smooth function that is identically one on $B_{2r_J}(x_J)$ and identically zero on $\Omega \setminus B_{3r_J}(x_J)$ with $|\nabla \rho_J| \leq C r_J^{-1}$, $|\nabla \nabla \rho_J| \leq C r_J^{-2}$ and set

$$\rho = 1 - \prod_{J=1}^l \rho_J.$$

Since φ and ρ are now fixed, Proposition 56 implies that we can choose a finite covering $\{B_{s_J}(x_J) : J = 1, \ldots, l'\}$ of $S_0(u) \cap v^{-1}(P_0) \cap \overline{\Omega}_0$ with

$$f(\sup_{\Omega} \nabla \varphi, \sup_{\Omega} |\nabla \nabla \varphi|, \sup_{\Omega} |\nabla \rho|) \sum_{J=1}^{l'} s_J^{n-2+D} < \frac{1}{i}, \quad (140)$$

79
where \(f \) is a certain function to be determined later.

Let \(\phi_J \) be a smooth function such that \(\phi_J \equiv 0 \) on \(\Omega_0 \setminus B_{2s_J}(\xi_J) \), \(|\nabla \phi_J| \leq Cs_J^{-1} \) and \(|\nabla \nabla \phi_J| \leq Cs_J^{-2} \). Define \(\phi \) by setting

\[
\phi = \prod_{J=1}^{\nu} \phi_J.
\]

Thus, \(\phi \equiv 0 \) in a neighborhood of \(\mathcal{S}_0(u) \cap v^{-1}(P_0) \cap \Omega_0 \), \(\phi \equiv 1 \) outside \(\bigcup_{J=1}^{\nu} B_{2s_J}(\xi_J) \) and \(0 \leq \phi \leq 1 \). Let

\[
\Omega_1 := \Omega_0 \setminus \bigcup_{J=1}^{\nu} B_{s_J}(\xi_J).
\]

Let \(\{ \hat{\psi}_i \} \) be defined as \(\{ \psi_i \} \) in Assumption 4. By taking a subsequence if necessary, we can assume

\[
\int_{\Omega_1} |\nabla u||\nabla \hat{\psi}_i|d\mu < \frac{1}{i}, \quad \int_{\Omega_1} |\nabla u||\nabla \hat{\psi}_i|^q d\mu < \frac{1}{i^q}.
\]

and

\[
\sup_{\Omega_1} |\nabla \varphi|^\delta \int_{\Omega_1} |\nabla \nabla u||\nabla \hat{\psi}_i|d\mu < \frac{1}{i^\delta}.
\] \((141) \)

Let

\[
\psi_i := \varphi^2 \phi^2 \hat{\psi}_i^2.
\]

Now notice that since the support of \(\nabla \varphi_{J_0} \) is in \(B_{2r_{J_0}}(x_{J_0}) \) and \(|\Pi_{J \neq J_0} \varphi_J| \leq 1 \), we have

\[
\int_{\Omega} |\nabla u||\nabla \varphi| \, d\mu \leq C \int_{\Omega} \left| \sum_{J_0} \nabla \varphi_{J_0} \prod_{J \neq J_0} \varphi_J \right| \, d\mu \\
\leq C \sum_{J_0} \int_{B_{2r_{J_0}}(x_{J_0})} |\nabla \varphi_{J_0}| \\
\leq C \sum_{J_0} r_{J_0}^{n-1} \frac{1}{i}
\]

by (138). Similar estimate applies to the integral involving \(\phi \). Combined with (141), we thus conclude

\[
\int_{\Omega} |\nabla u||\nabla \psi_i| \, d\mu
\]

80
\[
\int_{\Omega} |\nabla u| |\nabla \varphi| \, d\mu + \int_{\Omega} |\nabla u| |\nabla \phi| \, d\mu + \int_{\Omega} |\nabla u| |\nabla \hat{\psi}_i| \, d\mu
\leq \frac{C}{i}
\]

which proves inequality (133) of Statement 2. Similar computation proves the inequality

\[
\int_{\Omega} |\nabla u| |\nabla \psi_i|^9 \, d\mu \leq \frac{C}{i}.
\]

We now consider

\[
\int_{\Omega} |\nabla \nabla u| |\nabla \psi_i| \, d\mu = 2 \int_{\Omega} \varphi^2 \phi^2 \hat{\psi}_i |\nabla \nabla u||\nabla \hat{\psi}_i| \, d\mu + 2 \int_{\Omega} \phi \phi^2 \hat{\psi}_i |\nabla \nabla u||\nabla \phi| \, d\mu
\]

\[+ 2 \int_{\Omega} \varphi \phi^2 \hat{\psi}_i |\nabla \nabla u||\nabla \varphi| \, d\mu \]

\[=: (A) + (B) + (C).\]

Note that by (141),

\[(A) = 2 \int_{\Omega} \varphi^2 \phi^2 \hat{\psi}_i |\nabla \nabla u||\nabla \hat{\psi}_i| \, d\mu \leq 2 \int_{\Omega} |\nabla \nabla u||\nabla \hat{\psi}_i| \, d\mu \leq \frac{C}{i}.
\]

We next estimate (C). We first note a couple of facts that we will need. First by the order gap of v (cf. Proposition 57),

\[\sup_{B_{3r_j}(x_j)} |\nabla v| \leq C r_j^{\sigma_j}.\]

Next, combining the Eells-Sampson and Schoen-Yau formulae (cf. proof of [GS] Theorem 6.4), we have

\[|\nabla \nabla u|^2 |\nabla u|^{-1} \leq C (|\nabla u| + |\nabla \nabla u|) \text{ on } \mathcal{R}(u)\]

Now,

\[(C) = 2 \int_{\Omega} \varphi \phi^2 \hat{\psi}_i |\nabla \nabla u||\nabla \varphi| \, d\mu
\]

\[\leq 2 \left(\int_{\bigcup_{j=1}^{J} B_{3r_j}(x_j)} \varphi \phi \hat{\psi}_i |\nabla \varphi| \, |\nabla \nabla u|^2 |\nabla u|^{-1} \, d\mu \right)^{1/2}
\]

81
where the last inequality uses (136) and (138). Noting that the support of the function \(\varphi \rho \hat{\psi}_i \| \nabla \varphi \|^{\delta} \) is contained in \(\mathcal{R}(u) \), we multiply \(\varphi \rho \hat{\psi}_i \| \nabla \varphi \|^{\delta} \) to obtain

\[
\int_{\cup_{j=1}^l B_{3r_J}(x_J)} \varphi \rho \hat{\psi}_i \| \nabla \varphi \|^{\delta} \| \nabla \nabla u \|^2 |\nabla u|^{-1} d\mu \\
\leq C \int_{\cup_{j=1}^l B_{3r_J}(x_J)} \varphi \rho \hat{\psi}_i \| \nabla \varphi \|^{\delta} |\nabla u| d\mu \\
+ C \int_{\cup_{j=1}^l B_{3r_J}(x_J)} \triangle (\varphi \rho \hat{\psi}_i \| \nabla \varphi \|^{\delta}) |\nabla u| d\mu \\
=: (C_1) + (C_2).
\]

By (136) and (138),

\[
(C_1) \leq C \int_{\cup_{j=1}^l B_{3r_J}(x_J)} |\nabla \varphi|^{\delta} d\mu \leq C \sum_j r_j^{n-2+\delta} \leq \frac{C}{l}.
\]

To estimate \((C_2) \), we claim

\[
||\nabla u| - |\nabla V|| \leq C |\nabla v|.
\] (146)

To justify (146), we use the mean value theorem to write

\[
\frac{(|\nabla V|^2 + s)^{\frac{1}{2}} - |\nabla V|}{s} = \frac{1}{2} (|\nabla V|^2 + c)^{-\frac{1}{2}}
\]

for some \(c \in (0, s) \). Letting \(s = |\nabla v|^2 + 2 < \nabla V, \nabla v > \), we have

\[
|\nabla u| = |\nabla V| + \frac{1}{2} (|\nabla V|^2 + c)^{-\frac{1}{2}} (|\nabla v|^2 + 2 < \nabla V, \nabla v >).
\]
In the support of ρ and φ which is contained in \mathcal{N}, (137) implies

$$\left(\left|\nabla V\right|^2 + c\right)^{-\frac{1}{2}} \leq \left|\nabla V\right|^{-1} \leq C,$$

which then implies (146). By (146), we have that

$$\int_{\Omega} \varphi \rho \phi \nabla \varphi^\delta \Delta \hat{\psi}_i \left(\left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$= -\int_{\Omega} \left(\left|\nabla u\right| - \left|\nabla V\right|\right) \nabla (\varphi \rho \phi \nabla \varphi^\delta) \cdot \nabla \hat{\psi}_i d\mu$$

$$- \int_{\Omega} \varphi \rho \phi \nabla \varphi^\delta \nabla \hat{\psi}_i \cdot \nabla \left(\left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$\leq C \left(\int_{\Omega} \left|\nabla (\varphi \rho \phi \nabla \varphi^\delta)\right| \left|\nabla V\right| d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} \left|\nabla \hat{\psi}_i \right|^q \left|\nabla v\right| d\mu\right)^{\frac{1}{q}}$$

$$+ C \int_{\Omega} \left|\nabla \varphi^\delta \nabla \hat{\psi}_i \right| \left|\nabla \nabla u\right| d\mu.$$

Therefore,

$$(C_2) := \int_{\cup_{j=1}^{J} B_{3r_j}(x_j)} \Delta (\varphi \rho \phi \nabla \varphi^\delta) \left|\nabla u\right| d\mu$$

$$= \int_{\cup_{j=1}^{J} B_{3r_j}(x_j)} \Delta (\varphi \rho \phi \nabla \varphi^\delta) \left(\left|\nabla V\right| + \left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$= \int_{\Omega} \Delta (\varphi \rho \phi \nabla \varphi^\delta) \left|\nabla V\right| d\mu + \int_{\Omega} \hat{\psi}_i \Delta (\varphi \rho \phi \nabla \varphi^\delta) \left(\left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$+ \int_{\Omega} (\varphi \rho \phi \nabla \varphi^\delta) \nabla \hat{\psi}_i \left(\left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$+ 2 \int_{\Omega} \nabla (\varphi \rho \phi \nabla \varphi^\delta) \cdot \nabla \hat{\psi}_i \left(\left|\nabla u\right| - \left|\nabla V\right|\right) d\mu$$

$$\leq C \left(\int_{\Omega} \left|\nabla (\varphi \rho \phi \nabla \varphi^\delta)\right| \left|\nabla V\right| d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} \left|\nabla \nabla V\right|^p d\mu\right)^{\frac{1}{p}}$$

$$+ C \int_{\Omega} \hat{\psi}_i \left|\Delta (\varphi \rho \phi \nabla \varphi^\delta)\right| \left|\nabla v\right| d\mu$$

$$+ C \left(\int_{\Omega} \left|\nabla (\varphi \rho \phi \nabla \varphi^\delta)\right| \left|\nabla v\right| d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} \left|\nabla \hat{\psi}_i \right|^q \left|\nabla v\right| d\mu\right)^{\frac{1}{q}}$$

$$+ C \int_{\Omega} \varphi \rho \phi \nabla \varphi^\delta \nabla \hat{\psi}_i \left|\nabla \nabla u\right| d\mu$$

$$=: (C_{21}) + (C_{22}) + (C_{23}) + (C_{24}).$$
Using the fact that \(|\nabla \nabla V| \in L^p(\Omega) \) (cf. Lemma 44) and the fact that derivatives of \(\varphi \) and \(\rho \) are supported in \(\bigcup_{j=1}^l B_{3r_J}(x_J) \) and the derivatives of \(\phi \) are supported in \(\bigcup_{j=1}^{l'} B_{3s_J}(\xi_J) \), we have

\[
(C_{21}) \leq C \left(\int_{\Omega} |\nabla(\varphi \rho \phi)|^{\frac{q}{\delta}} d\mu \right)^{\frac{1}{q}} \\
\leq C \left(\sum_{j=1}^l r^{-q-q\delta} + \sup_{\Omega} |\nabla \varphi|^\delta \sum_{j=1}^{l'} s^{-q} \right)^{\frac{1}{q}} \\
\leq C \left(\frac{1}{\ell} \right)^{\frac{1}{q}}
\]

by (136), (138) and (140). Similar argument along (141) gives

\[
(C_{23}) \leq C \left(\int_{\Omega} |\nabla(\varphi \rho \phi)|^{\frac{p}{\delta}} |\nabla v| d\mu \right)^{\frac{1}{p}} \\
\leq C \left(\sum_{j=1}^l r^{-p-p\delta+\epsilon_0} + \sup_{\Omega} |\nabla \varphi|^\delta \sum_{j=1}^{l'} s^{-p+\epsilon_0} \right)^{\frac{1}{p}} \\
< C \left(\frac{1}{\ell} \right)^{\frac{1}{p}}
\]

and the same way

\[
(C_{22}) < C \left(\frac{1}{\ell} \right)^{\frac{1}{p}}.
\]

Finally, (141) also yields

\[
(C_{24}) \leq C \sup_{\Omega} |\nabla \varphi|^\delta \int_{\Omega} |\nabla \psi_i| |\nabla u| d\mu < \frac{C}{\ell}.
\]

Combining the estimates for \((C_{21}), (C_{22}), (C_{23}), (C_{24})\) with that of \((C_1)\), we obtain \((C) \leq \xi\). The estimate for \((B)\) is analogous to \((C)\) but simpler. We repeat the argument in \((C)\) with \(\delta = 0\) keeping in mind that, since we are near higher order points of \(u\), we have

\[
\sup_{B_{2s_j}(\xi_J)} |\nabla u| \leq C s_j^0
\]

(147)

the order gap of \(u\) of Proposition 56 (along with the monotonicity property of \(u\), cf. proof of [GS] Theorem 2.4). (Note that in \((C)\) we only have \(|\nabla u|\)
bounded near $S_j(u)$. Combining the estimates for (A), (B) and (C), we obtain
\[\int_{\Omega} |\nabla \nabla u| \nabla \psi_i | d\mu \leq C \left(\frac{1}{i} \right)^\frac{1}{p}. \tag{148} \]

The inequalities (142), (143) and (148) show that Statement 2 holds. Q.E.D.

The above completes the proof of Theorem 1 and Theorem 2. The inductive process also yields Theorem 3 as a consequence of Proposition 48. Similarly, Theorem 4 is an immediately consequence of Proposition 57. Furthermore, from Corollary 54, we can immediately deduce the following:

Corollary 58 If $u = (V, v) : B_{\sigma_*}(x_*) \to (\mathbb{R}^j \times Y_{2^{-j}2}, d_G)$ is a harmonic map, then there exist $C > 0$, $c > 0$, $R_0 > 0$ and $\epsilon_0 > 0$ such that
\[1 + \epsilon_0 \leq e^{-c\sigma^2} \frac{E^v_{x_0}(\sigma)}{I^v_{x_0}(\sigma)} \leq C, \quad \frac{I^v_{x_0}(\sigma)}{\sigma^{n+1+2\epsilon_0}} \leq C, \quad \frac{E^v_{x_0}(\sigma)}{\sigma^{n+2+2\epsilon_0}} \leq C \]
for all $x_0 \in S_j(u) \cap B_{\frac{R}{2}}(x_*)$ and $\sigma \in (0, R_0)$.

12 Appendix 1

The goal of this Section is to establish Proposition 60 below which is an analogue of [GS] Theorem 5.1. Recall that in Section 11, Proposition 60 was applied to the singular component map v of a harmonic map into a DM-complex and $x_0 \in S_j(u)$. The main difference from [GS] is that the map v is not necessarily harmonic but only approximately harmonic.

We first prove the following

Lemma 59 Let metrics G and h defined on $\mathbb{R}^j \times Y_{2^{-j}2}$ and $Y_{2^{-j}2}$ and $u = (V, v) : B_{\sigma_*}(x_*) \to (\mathbb{R}^j \times Y_{2^{-j}2}, d_G)$ be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. For $x_0 \in B_{\frac{R}{2}}(x_*) \cap S_j(u)$ and $\{v_\sigma\}$ the blow up maps of v at x_0. Let $\rho \in (0, 1)$. There exists a constant $C > 0$ depending only on ρ, the constant in the estimates (24) and (25) for the target metric G, the domain metric g and the Lipschitz constant of u such that for any harmonic map
\[w : (B_\theta(0), g_\sigma) \to Y_{2^{-j}2} \] with $E^w(\vartheta) \leq E^{w_\sigma}(\vartheta)$,
we have
\[
\sup_{B_{\sigma\vartheta}(0)} d^2(v_\sigma(x), w(x)) \leq C \int_{\partial B_{\sigma\vartheta}(0)} d^2(v_\sigma, w) d\Sigma_\sigma + C\sigma^2 \vartheta^4. \tag{149}
\]

Proof. Let \(\hat{w}(x) : B_{\sigma\vartheta}(0) \rightarrow Y \) be \(\hat{w}(x) = v_\sigma \hat{w}(\sigma^{-1} x) \). Note that as in Proposition 41 the Lipschitz constants of \(\hat{w} \) are uniformly bounded. Rewriting (76), we have
\[
-C \int_{B_{\sigma\vartheta}(0)} \eta d(v, P_0) d(v, \hat{w}) d\mu \leq - \int_{B_{\sigma\vartheta}(0)} \nabla \eta \cdot \nabla d^2(v, \hat{w}) d\mu.
\]
Let \(x \in B_{\sigma\vartheta}(0) \) and \(\eta \) approximate the characteristic function of \(B_s(x) \subset B_{\sigma\vartheta}(0) \) to obtain
\[
-C \int_{B_s(x)} d(v, P_0) d(v, \hat{w}) d\mu \leq \int_{\partial B_s(x)} \frac{\partial}{\partial s} d^2(v, \hat{w}) d\mu.
\]
As in Proposition 42
\[
\int_{\partial B_s(x)} \frac{\partial}{\partial s} d^2(v, \hat{w}) d\Sigma \leq s^{n-1} \frac{d}{ds} \left(\frac{e^{Cs^2}}{s^{n-1}} \int_{\partial B_s(x)} d^2(v, \hat{w}) d\Sigma \right).
\]
Combining the above two inequalities for \(s \in (0, \frac{\sigma\vartheta}{4}) \),
\[
0 \leq \frac{d}{ds} \left(\frac{e^{Cs^2}}{s^{n-1}} \int_{\partial B_s(x)} d^2(v, \hat{w}) d\Sigma \right) + Cs^{-n+1} \int_{B_{\sigma\vartheta}(x)} d(v, \hat{w}) d(v, P_0) d\mu. \tag{150}
\]
Integrating this over \(s \in (0, t) \), we obtain
\[
0 \leq \frac{e^{Ct^2}}{t^{n-1}} \int_{\partial B_t(x)} d^2(v, \hat{w}) d\Sigma - \frac{1}{C_n} d^2(v(x), \hat{w}(x)) + Ct^{-n+2} \int_{B_{\sigma\vartheta}(x)} d(v, \hat{w}) d(v, P_0) d\mu.
\]
Thus,
\[
t^{n-1} d^2(v(x), \hat{w}(x)) \leq C \int_{\partial B_t(x)} d^2(v, \hat{w}) d\Sigma + Ct \int_{B_{\sigma\vartheta}(x)} d^2(v, \hat{w}) d(v, P_0) d\mu.
\]
Integrating this over \(t \in (0, \frac{\sigma\vartheta}{4}) \), we obtain
\[
d^2(v(x), \hat{w}(x)) \leq \frac{C}{(\sigma\vartheta)^n} \int_{B_{\sigma\vartheta}(x)} d^2(v, \hat{w}) d\mu + \frac{C}{(\sigma\vartheta)^{n-2}} \int_{B_{\sigma\vartheta}(x)} d(v, \hat{w}) d(v, P_0) d\mu.
\]
Since
\[x \in B_{\frac{\sigma \rho}{4}}(0) \Rightarrow B_{\frac{\sigma \rho}{4}}(x) \subset B_{\sigma \rho}(0), \]
we obtain
\[
\sup_{B_{\frac{\sigma \rho}{4}}(0)} d^2(v(x), \hat{w}(x))
\leq \frac{C}{(\sigma \vartheta)^n} \int_{B_{\sigma \rho}(0)} d^2(v, \hat{w}) d\mu + \frac{C}{(\sigma \vartheta)^{n-2}} \int_{B_{\sigma \rho}(0)} d(v, \hat{w}) d(v, P_0) d\mu
\leq \frac{C}{(\sigma \vartheta)^n} \int_{B_{\sigma \rho}(0)} d^2(v, \hat{w}) d\mu + \frac{C}{(\sigma \vartheta)^{n-2}} \int_{B_{\sigma \rho}(0)} d^2(v, P_0) d\mu
\]
(151)

where we have used the Cauchy-Schwartz inequality and adjusted the constant \(C \) in the last inequality. Similarly to (150), we have for \(s \in (0, \rho \sigma \vartheta) \)
\[0 \leq \frac{d}{ds} \left(\frac{e^{C s^2}}{s^n} \int_{\partial B_s(0)} d^2(v, \hat{w}) d\Sigma \right) + C s^{-n+1} \int_{B_{\rho \sigma \vartheta}(0)} d(v, \hat{w}) d(v, P_0) d\mu. \]

Integrating this over \(s \in (t, \sigma \rho \vartheta) \), we obtain
\[
0 \leq \frac{e^{C t^2}}{(\rho \vartheta)^n} \int_{\partial B_t(0)} d^2(v, \hat{w}) d\Sigma - \frac{e^{C t^2}}{t^{n-1}} \int_{\partial B_t(0)} d^2(v, \hat{w}) d\Sigma
\]
\[+ C (\rho \vartheta)^{(-n+2)} \int_{B_{\sigma \rho \vartheta}(0)} d(v, \hat{w}) d(v, P_0) d\mu, \]
and hence
\[
\int_{\partial B_t(0)} d^2(v, \hat{w}) d\Sigma
\leq \frac{C t^{n-1}}{(\rho \vartheta)^{n-1}} \int_{\partial B_{\rho \sigma \vartheta}(0)} d^2(v, \hat{w}) d\Sigma + \frac{C t^{n-1}}{(\rho \vartheta)^{n-2}} \int_{B_{\rho \sigma \vartheta}(0)} d(v, \hat{w}) d(v, P_0) d\mu.
\]

Furthermore, integrating this over \(t \in (0, \rho \sigma \vartheta) \), we obtain
\[
\frac{1}{(\sigma \rho \vartheta)^n} \int_{B_{\sigma \rho \vartheta}(0)} d^2(v, \hat{w}) d\mu
\leq \frac{C}{(\sigma \rho \vartheta)^{n-1}} \int_{\partial B_{\sigma \rho \vartheta}(0)} d^2(v, \hat{w}) d\Sigma + \frac{C}{(\sigma \rho \vartheta)^{n-2}} \int_{B_{\sigma \rho \vartheta}(0)} d(v, \hat{w}) d(v, P_0) d\mu.
\]
which implies (by Cauchy-Schwartz and adjusting the constant C)

$$
\frac{1}{(\sigma \vartheta)^n} \int_{B_{\sigma \rho \vartheta}(0)} d^2(v, \hat{w}) d\mu
\leq \frac{C}{(\sigma \vartheta)^{n-1}} \int_{\partial B_{\sigma \rho \vartheta}(0)} d^2(v, \hat{w}) d\Sigma + \frac{C}{(\sigma \vartheta)^{n-2}} \int_{B_{\sigma \rho \vartheta}(0)} d^2(v, P_0) d\mu.
$$

(152)

Combining (151) and (152), we obtain

$$
\sup_{B_{\rho \vartheta}(0)} d^2(v(x), \hat{w}(x)) \leq \frac{C}{(\sigma \vartheta)^{n-1}} \int_{\partial B_{\rho \vartheta}(0)} d^2(v, \hat{w}) d\Sigma + \frac{C}{(\sigma \vartheta)^{n-2}} \int_{B_{\rho \vartheta}(0)} d^2(v, P_0) d\mu.
$$

Multiplying by ν^{-1} and applying change of variables, we obtain

$$
\sup_{B_{\rho \vartheta}(0)} d^2(v_\sigma(x), w(x)) \leq C \int_{\partial B_{\rho \vartheta}(0)} d^2(v_\sigma, w) d\Sigma_\sigma
+ C \sigma^2 \frac{C}{\vartheta^{n-2}} \int_{B_{\rho \vartheta}(0)} d^2(v_\sigma, P_0) d\mu_\sigma.
$$

(153)

The monotonity formula of Corollary 54 implies

$$
\frac{\int_{\partial B_s(0)} d^2(v_\sigma, P_0) d\Sigma_\sigma}{s^{n-1}} = \nu^{-2}_\sigma \frac{\int_{\partial B_{s\sigma}(0)} d^2(v, P_0) d\Sigma}{(s\sigma)^{n-1}}
= \nu^{-2}_\sigma \frac{\int_{\partial B_{s\sigma}(0)} d^2(v, P_0) d\Sigma}{(s\sigma)^{n+1}}
\leq e^C \nu^{-2}_\sigma \frac{\int_{\partial B_{s\sigma}(0)} d^2(v, P_0) d\Sigma}{s^{n+1}}
= e^C \nu^{-2}_\sigma \frac{\int_{\partial B_s(0)} d^2(v, P_0) d\Sigma}{s^{n-1}}
= e^C \frac{s^2}{\int_{\partial B_1(0)} d^2(v_\sigma, P_0) d\Sigma_\sigma}
= e^C s^2.
$$

88
Thus,
\[\int_{\partial B_s(0)} d^2(v_\sigma, P_0) d\Sigma_\sigma \leq Cs^{n+1}. \]

Integrating this with respect to \(s \) over the interval \((0, \rho \vartheta)\), we conclude that the second term on the right hand side of (153) is bounded by \(C\sigma^2 \vartheta^4 \) implies the assertion of the lemma. Q.E.D.

Proposition 60 Let metrics \(G \) and \(h \) defined on \(R^j \times Y_2^{k-j} \) and \(Y_2^{k-j} \) and \(u = (V, v) : B_{\sigma}(x_\ast) \to (R^j \times Y_2^{k-j}, d_G) \) be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5. Let \(x_0 \in B_{\tau}(x_\ast) \cap S_j(u) \), \(\{v_\sigma\} \) the blow up maps of \(v \) at \(x_0 \) and \(l : B_1(0) \to Y_2^{k-j} \) a homogeneous degree 1 map. There exists \(D_0 > 0 \) such that
\[\sup_{B_{\bar{\tau}}(0)} d(v_\sigma, l) < D_0, \]
then there exists \(\lambda > 0 \) such that
\[\sup_{B_t(0)} d(v_\sigma, P_0) > \lambda t \]
for \(t \) sufficiently small.

As before, we let \(g_\theta(x) = g(\theta x) \) and \(d\Sigma_\theta, d\mu_\theta \) be the volume forms on \(\partial B_\rho(0), B_\rho(0) \) respectively. For notational simplicity, we will sometimes omit the subscript and write \(d\Sigma \) and \(d\mu \).

The proof of Proposition 60 involves a proof by induction described in the following lemma.

Lemma 61 Let metrics \(G \) and \(h \) defined on \(R^j \times Y_2^{k-j} \) and \(Y_2^{k-j} \) and \(u = (V, v) : B_{\sigma}(x_\ast) \to (R^j \times Y_2^{k-j}, d_G) \) be a harmonic map that satisfy Assumption 1, Assumption 2 and Assumption 3 of Section 5 and \(l : B_1(0) \to Y_2^{k-j} \) a homogeneous degree map. For \(\vartheta \in (0, 1], \) let \(v^\vartheta(x) = \vartheta^{-1}v(\vartheta x) \) and \(l^\vartheta(x) = \theta^{-1}(\vartheta x). \) Assume the following conditions:

(i) For \(\rho \in \left[\frac{3}{4}, \frac{7}{8}\right] \) and the harmonic map
\[w : (B_\rho(0), g_\theta) \to Y_2^{k-j} \quad \text{with} \quad w|_{\partial B_\rho(0)} = v^\vartheta|_{\partial B_\rho(0)} \]
we have
\[\sup_{B_1(0)} d^2(v^\vartheta(x), w(x)) \leq C \int_{\partial B_\rho(0)} d^2(v^\vartheta, w) d\Sigma + c\vartheta^2. \] (154)

(ii) For \(w : B_\rho(0) \subset \mathbb{R}^n \to Y^{k-j}_2 \) as in (i) there exists \(\beta > 0 \) and a homogeneous degree 1 map \(\hat{l} : B_1(0) \subset \mathbb{R}^n \to Y^{k-j}_2 \) such that
\[\sup_{B_\theta(0)} d(w, \hat{l}) \leq C\vartheta^{1+\beta} \inf_L \sup_{B_{\frac{1}{4}}(0)} d(w, L), \ \forall \theta \in (0, \frac{1}{4}) \] (155)
where the infimum is taken over all homogeneous maps \(L \) of degree 1.

(iii) The constants \(C > 1, \theta \in (0, \frac{1}{4}), \beta, c \in (0, 1) \) and the map \(l^1 \) satisfy
\[C\theta^\beta < \frac{1}{8}, \] (156)
and
\[c\theta^{-2} < \frac{D_0^2}{32}. \] (157)

Let \(l : B_1(0) \subset \mathbb{R}^n \to Y^{k-j}_2 \) be a homogeneous map of degree 1 then we have the following implication:
\[\left\{ \begin{array}{l}
\sup_{B_1(0)} d(v^\vartheta, l) < \frac{D_0}{2i} \\
\sup_{B_1(0)} d(v^\vartheta, l^i) d\mu < \vartheta \end{array} \right. \] (158)
implies that there exists a homogeneous degree 1 map \(i+1l : B_1(0) \to Y^{k-j}_2 \) so that
\[\left\{ \begin{array}{l}
\sup_{B_1(0)} d(v^{\vartheta^{i+1}}, i+1l) < \frac{D_0}{2^{i+1}} \\
\sup_{B_1(0)} d(v^{\vartheta^{i+1}}, l^{i+1}) < i+1\delta := 2\theta^{-1} \frac{D_0}{2^i} + i\delta. \end{array} \right. \] (159)
Proof. We first give the proof of the first inequality of (159). Let \(w : B_\rho(0) \to Y_{2}^{k-j} \) be given as in (i) with \(\vartheta = \theta^i \). First, since \(w|_{\partial B_\rho(0)} = v^\theta|_{\partial B_\rho(0)} \),

\[
\sup_{B_{\frac{1}{4}}(0)} d^2(v^\theta, w) \leq c\theta^{2i} \quad \text{(by (154))}
\]

\[
\leq \frac{\theta^2 \left(\frac{D_0}{2^i} \right)^2}{16} \quad \text{(by (157)).} \tag{160}
\]

By Assumption (ii) inequality (155), there exists a homogeneous degree 1 harmonic map \(\hat{l} : B_1(0) \to Y_{2}^{k-j} \) such that

\[
\sup_{B_\rho(0)} d(w, \hat{l}) \leq C\theta^{1+\beta} \sup_{B_{\frac{1}{2}}(0)} d(w, l). \tag{161}
\]

With \(i+1 \): \(B_1(0) \to Y_{2}^{k-j} \) defined by \(i+1l(x) = \theta \hat{l}(x) \), we obtain

\[
\sup_{B_1(0)} d(w^\theta, i+1l) \leq \theta^{-1} \sup_{B_{\frac{1}{4}}(0)} d(w, \hat{l})
\]

\[
\leq C\theta^\beta \sup_{B_{\frac{1}{4}}(0)} d(w, l) \quad \text{(by (161))}
\]

\[
\leq C\theta^\beta \left(\sup_{B_{\frac{1}{4}}(0)} d(w, v^\theta) + \sup_{B_{\frac{1}{4}}(0)} d(v^\theta, l) \right)
\]

\[
< C\theta^\beta \left(\frac{\theta D_0}{4 2^i} + \frac{D_0}{2^i} \right) \quad \text{(by (160) and (158))}
\]

\[
< C\theta^\beta \frac{D_0}{2^{i-1}}
\]

\[
< \frac{1}{2} \frac{D_0}{2^{i+1}} \quad \text{(by (156)).}
\]

Combined with (160), this implies

\[
\sup_{B_1(0)} d(v^{\theta+1}, i+1l) \leq \sup_{B_1(0)} d(v^{\theta+1}, w^\theta) + \sup_{B_1(0)} d(w^\theta, i+1l) < \frac{D_0}{2^{i+1}}.
\]
This completes the proof of the first inequality of (159).

We now prove the second inequality of (159). Since \(l^{\theta}(0) = v^{\theta}(0) \), we have

\[
d(l^{\theta}(0), l(0)) = d(v^{\theta}(0), l(0)) < \frac{D_0}{2^i}.
\]

By the NPC condition, we obtain for any \(x \in B_1(x) \) that

\[
d(l^{\theta}(\theta x), l(\theta x)) \leq (1 - \theta) d(l^{\theta}(0), l(0)) + \theta d(l^{\theta}(x), l(x)).
\]

Thus,

\[
d(l^{\theta}(\theta x), l(\theta x)) < (1 - \theta) \frac{D_0}{2^i} + \theta d(l^{\theta}(x), l(x))
\]

\[
\leq (1 - \theta) \frac{D_0}{2^i} + \theta (d(l^{\theta}(x), v^{\theta}(x)) + d(v^{\theta}(x), l(x)))
\]

\[
< (1 - \theta) \frac{D_0}{2^i} + \theta (\delta + \frac{D_0}{2^i})
\]

\[
\leq \frac{D_0}{2^i} + \theta \delta.
\]

Therefore,

\[
d(v^{\theta+1}(x), l^{\theta+1}(x)) < 2\theta^{-1} \frac{D_0}{2^i} + \delta.
\]

This proves the second inequality of (159) and completes the proof. Q.E.D.

Proof of Proposition 60. Assume

\[
\sup_{B_{\frac{1}{2}}(0)} d(v_\sigma, l) < D_0.
\]

For \(x_1 \) is sufficiently close to 0 such that setting \(Q = v(x_1) \) and choosing new coordinates with \(x_1 \) identified as 0 via normal coordinates centered at \(x_1 \), we have

\[
\sup_{B_{\frac{1}{4}}(0)} d(v_\sigma, l_Q) < D_0.
\]

Define \(v^1 : B_1(0) \to Y_2^{k-j} \) and \(l^1 : B_1(0) \to Y_2^{k-j} \) by setting \(v^1(x) = v_\sigma(\frac{x}{4}) \) and \(l^1(x) = l_Q(\frac{x}{4}) \) and hence

\[
\sup_{B_{\frac{1}{4}}(0)} d(v^1, l^1) < D_0.
\]
Choose $C > 0$ sufficiently large such that inequality (154) of Assumption (i) and the inequality (155) of Assumption (ii) are both valid. This can be done by Lemma 59 and [GS] Theorem 6.3. For this choice of C, to obtain inequality (154) choose $\theta \in (0, \frac{1}{4})$ such that (156) is satisfied. Finally, choose σ_0 sufficiently small such that (157) is satisfied for $c = C\sigma_0^2$. With this choice of c, we can rewrite the inequality (154) as

$$\sup_{x \in B_{\frac{1}{4}}(0)} d^2(v_{\sigma}^{\theta_i}(x), w(x)) \leq C \int_{\partial B_\rho(0)} d^2(v_{\sigma}^{\theta_i}, w) d\Sigma + c\theta^{2i}$$

for a harmonic map $w : (B_\rho(0), g_{\theta_i}) \to Y_{2k-j}$ with $\rho \in \left[\frac{3}{4}, \frac{7}{8}\right]$. In other words, condition (i) of Lemma 61 is satisfied for v_{σ}. By [GS] Theorem 6.3, condition (ii) of Lemma 61 is satisfied. With the choices of constants above, condition (iii) of Lemma 61 is satisfied.

Apply Lemma 61 to obtain

$$\sup_{B_{\frac{1}{2}}(0)} d(v_{\sigma}^{\theta_i}, l_{\theta_i}) < \delta^{\theta}\frac{D_0}{2^{i-1}} + \delta^{i-1}\delta$$

$$= \theta^{-1} \sum_{j=0}^{i-1} \frac{D_0}{2^j} + \delta^i + \delta$$

$$\leq 2\theta^{-1} D_0 + D_0.$$

Thus,

$$\sup_{B_{\rho_i}(x)} d(v_{\sigma}, l) < 2\theta^{i-1} D_0 + \theta^i D_0.$$

For $s > 0$, let j such that $\theta^{j+1} \leq s < \theta^j$. Then

$$\sup_{B_{\rho_i}(x)} d(v_{\sigma}, l) < 2\theta^{j-1} D_0 + \theta^j D_0 < (2\theta^{-2} D_0 + \theta^{-1} D_0) s.$$

Assume D_0 is sufficiently small such that

$$\sup_{B_{\rho_i}(0)} d(v_{\sigma}, P_0) \geq \sup_{B_{\rho_i}(0)} d(l, P_0) - \sup_{B_{\rho_i}(0)} d(v_{\sigma}, l) > \lambda s$$

for some $\lambda > 0$. Q.E.D.
13 Appendix 2

The purpose of this Appendix is to provide a proof of the crucial codimension 2 property for a set of higher order points needed in the proof of Theorem 1. As described in the proof of Theorem 1, we need two separate statements: one for the original harmonic map u and one for the singular component v. In addition, a more general statement is needed in future applications. Thus, we will prove a general codimension 2 statement that covers all cases at once. We start with lemma regarding the upper semicontinuity of Hausdorff dimension.

Lemma 62 If S_i be a sequence of closed subsets of $B_1(0)$ satisfying a property that

$$x_i \in S_i \text{ and } x_i \to x_0 \in B_1(0) \Rightarrow x_0 \in S_0$$

(162)

for some closed subset S_0 of $B_1(0)$, then

$$\limsup_{i \to \infty} \dim_H(S_i) \leq \dim_H(S_0).$$

(163)

Proof. Following [GS], define $\hat{H}^s(\cdot)$ by

$$\hat{H}^s(S) = \inf \left\{ \sum_{l=1}^{\infty} r^s_l : \text{all coverings } \{B_{r_l}(x_l)\}_{l=1}^{\infty} \text{ of } S \text{ by open balls} \right\}.$$

Called the rough outer Hausdorff measure, \hat{H}^s is not precisely the Hausdorff measure H^s, but its importance is in the fact that the Hausdorff dimension of any set S is given by

$$\dim_H(S) = \inf \{ s : H^s(S) = 0 \} = \inf \{ s : \hat{H}^s(S) = 0 \}.$$

We now come to the proof of (163). First, fix $s > 0$ and let $r \in (0, 1)$. Given $\epsilon_1 > 0$, let $\{B_{r_l}(x_l)\}_{l=1}^{N}$ be a finite covering of $S_0 \cap B_r(0)$ such that $x_i \in S_0$ and

$$\hat{H}^s(S_0 \cap \overline{B_r(0)}) + \epsilon_1 \geq \sum_{l=1}^{N} r^s_l.$$

Note here that it is enough to consider finite coverings since S_0 is compact. By (162), $\{B_{r_l}(x_l)\}_{l=1}^{N}$ is a covering of $(S_i \cap \overline{B_r(0)})$ for i sufficiently large. Hence, for i sufficiently large,

$$\hat{H}^s(S_0 \cap \overline{B_r(0)}) + \epsilon_1 \geq \sum_{l=1}^{N} r^s_l \geq \hat{H}^s(S_i \cap \overline{B_r(0)}).$$
Since ε₁ is arbitrary, this proves (163). Q.E.D.

Recall that we are interested in maps that are not necessarily harmonic. More precisely, we are interested in maps given in the following Definition:

Definition 63 Let \(v : B_{\sigma}(x_*) \to (Y, d) \) be a finite energy continuous map from a Riemannian domain into an NPC space and let \(S \) be a closed subset of \(B_{\sigma}(x_*) \). For \(x \in S \) and \(0 < \sigma < \sigma_0 =: \sup \{ \sigma : B_{\sigma}(x) \subset B_{\sigma_0}(x_*) \} \), assume that \(v \) is not constant in any neighborhood of \(x \) and define

\[
Ord^v(x, \sigma) := \frac{\sigma E^v_x(\sigma)}{I^v_x(\sigma)}.
\]

We say \(v \) satisfies (P1), (P2) and (P3) with respect to \(S \) if it satisfies the properties below.

(P1) At any \(x \in S \), we require that \(v \) has a well defined order at \(x \) in the sense that it satisfies the following properties: there exist constants \(C > 0 \), \(C_1 > 0 \) and \(R_0 > 0 \) such that for any \(x \in S \), there exists a function \(\sigma \mapsto J_x(\sigma) \) satisfying

\[
e^{-C_1} I^v_x(\sigma) \leq J_x(\sigma) \leq I^v_x(\sigma) e^{C_1} \sigma, \quad \forall \sigma \in (0, R_0),
\]

\[
\sigma \mapsto e^{C_0} \frac{\sigma E^v_x(\sigma)}{J^v_x(\sigma)}
\]

is non-decreasing in \((0, R_0) \),

\[
\lim_{\sigma \to 0} Ord^v(x) := \lim_{\sigma \to 0} Ord^v(x, \sigma)
\]

exists and

\[
Ord^v(x) \leq e^{(C + C_1) \sigma} \frac{\sigma E^v_x(\sigma)}{I^v_x(\sigma)}, \quad \forall \sigma \in (0, R_0).
\]

(P2) For any \(x \in S \), identify \(x = 0 \) via normal coordinates and define blow-up maps and approximating blow-up maps at \(x \) as follows. We first define the restriction maps

\[
\sigma v : (B_\sigma(0), g) \to Y, \quad \sigma v = v|_{B_\sigma(0)};
\]

the harmonic maps

\[
\sigma w : (B_\sigma(0), g) \to (Y, d) \quad \text{with} \quad \sigma w|_{\partial B_\sigma(0)} = \sigma v|_{\partial B_\sigma(0)}
\]
and set
\[\nu_\sigma = \left(\frac{I_0^\sigma_v(\sigma)}{\sigma^{n-1}} \right)^{1/2}. \]
(164)

Let \(g_\sigma(y) = g(\sigma y) \) be the rescaled metric on \(B_1(0) \) and define the rescaled maps
\[v_\sigma, w_\sigma : (B_1(0), g_\sigma) \to (Y, d) \]
by setting
\[v_\sigma(y) = \nu_\sigma^{-1} \sigma v(\sigma y) \text{ and } w_\sigma(y) = \nu_\sigma^{-1} \sigma w(\sigma y). \]
The normalization by \(\nu_\sigma \) implies that
\[I_0^{v_{\sigma,x}}(1) = 1. \]

We require that given a sequence \(\sigma_i \to 0 \), there exists a subsequence (which we call again \(\sigma_i \) by a slight abuse of notation) such that the blow up maps \(v_{\sigma_i} : B_1(0) \to (Y, \mu^{-1}(\sigma_i)d) \) at \(x \) converge locally uniformly in the pullback sense to a homogeneous harmonic map \(v_0 : (B_1(0), \delta) \to (Y_0, d_0) \) for some NPC space . We also require that for any \(r \in (0, 1) \)
\[\lim_{i \to \infty} \sup_{B_r(0)} d(v_{\sigma_i}, w_{\sigma_i}) = 0. \]
In particular, \(w_{\sigma_i} \) also converges locally uniformly in the pullback sense to \(v_0 \). Furthermore, for any \(\sigma_i \xi \in \mathcal{S} \) we have \(\text{Ord}^{v_{\sigma_i}}(\xi) = \text{Ord}^v(\sigma_i \xi) \). In other words, the order for \(v_{\sigma_i} \) exists for any point in \(\sigma_i^{-1} \mathcal{S} \).

(P3) With the notation as in (P2), we require that for the sequences \(v_{\sigma_i}, w_{\sigma_i} \) in (P2) and for any \(R \in (0, 1) \), there exists a constant \(C > 0 \) such that for any \(\xi \in B_R(0) \) and \(r > 0 \) such that \(B_r(\xi) \subset B_R(0) \),
\[\left| E_\xi^{v_{\sigma_i}}(r) - E_\xi^{w_{\sigma_i}}(r) \right| < C \sigma_i. \]
(165)

Remark 64 A harmonic map \(u : B_1(0) \to Y \) into an NPC space satisfies properties (P1), (P2) and (P3) with respect to \(\mathcal{S} = B_{\varphi_{L}}(x_*) \) (cf. [GS]). Also, a singular component \(v \) of a harmonic map \(u = (V, v) : B_1(0) \to (\mathbb{R}^j, Y_2) \) into a DM-complex satisfies properties (P1), (P2) and (P3) respect to \(\mathcal{S} = \mathcal{S}_j(u) \). Similar properties also hold for the singular component of a harmonic map in or into the Weil-Petersson completion Teichmuller space.
Lemma 65 Let \(v : B_{\sigma_i}(x_*) \to (Y,d) \) be a map satisfying properties (P1), (P2) and (P3) with respect to closed subset \(S \subset B_{2\varepsilon}(x_*) \). Let \(x \in S \}, \{v_{\sigma_i}\} \) the blow-up maps of \(v \) at \(x \), and \(v_0 \) as in (P2). If \(x_i \in \sigma_i S \) converges to \(x_0 \), then
\[
\liminf_{i \to \infty} \operatorname{Ord}^v_{\sigma_i}(x_i) \leq \operatorname{Ord}^v_0(x_0).
\]

Proof. Identify \(x = 0 \) via normal coordinates and let \(w_{\sigma_i} \) be as in (P2). For \(i \) sufficiently large,
\[
E_0^v_0(1) \leq E_0^v_{\sigma_i}(1) = \frac{E_0^v_{\sigma_i}(1)}{I_0^v_{\sigma_i}(1)} = \frac{\sigma_i E_0^v(\sigma_i)}{I_x^v(\sigma_i)} < 2\operatorname{Ord}^v(x).
\]

Thus, for \(R \in (0,1) \), [KS1] Theorem 2.4.6 implies that \(\{w_{\sigma_i}|_{B_R(0)}\} \) has a uniform Lipschitz bound. We can therefore apply lower semicontinuity of energy (cf. [KS2] Lemma 3.8) to conclude that, for \(x_0 \in B_1(0) \) and \(r > 0 \) such that \(B_r(x_0) \) is compactly contained in \(B_1(0) \), we have \(E_0^v_{x_0}(r) \leq \lim inf_{i \to \infty} E_0^v_{\sigma_i}(r) \). On the other hand, by [KS2] Theorem 3.9 there is no loss of energy, i.e \(E_0^v_{x_0}(r) = \lim_{i \to \infty} E_0^v_{\sigma_i}(r) \). By the uniform Lipschitz continuity and the convergence \(x_i \to x_0 \), we also have \(|E_0^v_{x_0}(r) - E_0^v_{\sigma_i}(r)| \leq C|x_i - x_0| \) for some \(C \) independent of \(i \). Furthermore, (P3) implies that \(|E_0^v_{x_0}(r) - E_0^v_{\sigma_i}(r)| < C\sigma_i \). Hence
\[
E_0^v_{x_0}(r) = \lim_{i \to \infty} E_0^v_{\sigma_i}(r).
\]

Furthermore,
\[
I_0^v_{x_0}(r) = \lim_{i \to \infty} I_0^v_{\sigma_i}(r)
\]
by the local uniform convergence in the pullback sense. Combining the above two equalities, we obtain
\[
\frac{rE_0^v_{x_0}(r)}{I_0^v_{x_0}(r)} = \lim_{i \to \infty} \frac{rE_0^v_{\sigma_i}(r)}{I_0^v_{\sigma_i}(r)}.
\]

Now we apply the monotonicity assumption of (P1) to obtain the result. Indeed, (P1) implies for \(c = C + C_1 \)
\[
\operatorname{Ord}^v_{\sigma_i}(x_i) \leq e^{-cr}E_0^v_{\sigma_i}(r).
\]
Taking \(\liminf \) as \(i \to \infty \) (166) implies
\[
\liminf_{i \to \infty} \Ord^{v_{\sigma_i}}(x_i) \leq e^{e_0} \frac{r E^{v_0}(r)}{T^{v_0}(r)}.
\]

Finally, by letting \(r \to 0 \), we obtain the assertion. Q.E.D.

Definition 66 We say that a map \(v : B_{\sigma_i}(x_*) \to (Y, d) \) satisfying properties (P1), (P2) and (P3) with respect to closed subset \(S \subset B_{2\epsilon}(x_*) \) satisfies an order gap property with respect to \(S \) if there exists \(\epsilon_0 > 0 \) such that for any \(x \in S \), either \(\Ord^v(x) = 1 \) or \(\Ord^v(x) \geq 1 + \epsilon_0 \) (or equivalently, \(\Ord^{v_0}(0) = 1 \) or \(\Ord^{v_0}(0) \geq 1 + \epsilon_0 \) for \(v_0 \) as in (P2)).

Definition 67 A higher order point of \(v \) is a point \(x \) such that \(\Ord^v(x) \) exists and is \(> 1 \). We denote the set of higher order points of \(v \) by \(S_0(v) \).

Lemma 68 Let \(v : B_{\sigma_i}(x_*) \to (Y, d) \) be a map satisfying properties (P1), (P2) and (P3) with respect to closed subset \(S \subset B_{2\epsilon}(x_*) \). If \(v \) satisfies the order gap property with respect to \(S \) as in Definition 66 and \(x \in S \), \(\{v_{\sigma_i}\} \) and \(v_0 \) are as in (P2), then
\[
\limsup_{i \to \infty} \dim_H(\sigma_i^{-1}(S_0(v) \cap S)) \leq \dim_H(S_0(v_0)).
\]

Proof. Identify \(x = 0 \) via normal coordinates. By Lemma 62, it suffices to prove
\[
x_i \in \sigma_i^{-1}(S_0(v) \cap S) \text{ and } x_i \to x_0 \Rightarrow x_0 \in S_0(v_0).
\]
Since \(1 + \epsilon_0 \leq \Ord^v(\sigma_i x_i) = \Ord^{v_0}(x_i) \) by the order gap assumption, we have \(1 + \epsilon_0 \leq \Ord^{v_0}(x_0) \) by Lemma 65. Hence \(x_0 \in S_0(v_0) \). Q.E.D.

Lemma 69 Let \(v : B_{\sigma_i}(x_*) \to (Y, d) \) be a map satisfying properties (P1), (P2) and (P3) with respect to closed subset \(S \subset B_{2\epsilon}(x_*) \). If \(v \) satisfies the order gap property with respect to \(S \) as in Definition 66, then for every \(x \in S_0(v) \)
\[
\dim_H(S_0(v) \cap S) \leq \dim_H(S_0(v_0))
\]
where \(v_0 \) is the limit of the blow-up maps of \(v \) at \(x \) as in (P2).
Proof. Suppose on the contrary that \(\dim_H(S_0(v) \cap S) > \dim_H(S_0(v_0) \cap S) \) and choose
\[
\dim_H(S_0(v) \cap S) > s > \dim_H(S_0(v_0)).
\]
Since \(\mathcal{H}^s(S_0(v) \cap S) > 0 \), [Fe] 2.10.19 implies that there exists \(x \in S_0(v) \) such that (after identifying \(x = 0 \) via normal coordinates)
\[
\lim_{i \to \infty} \mathcal{H}^s(\sigma_i^{-1}(S_0(v) \cap S)) = \lim_{i \to \infty} \frac{\mathcal{H}^s(S_0(v) \cap S \cap B_{\sigma_i}(0))}{\sigma_i^s} \geq 2^{-s}.
\]
Thus, \(\dim_H(\sigma_i^{-1}(S_0(v) \cap S)) \geq s \) for \(i \) sufficiently large. By Lemma 68, \(\dim_H(S_0(v_0)) \geq s \) which is a contradiction. Q.E.D.

Definition 70 Let \(v : B_{\sigma}(x_*) \to (Y, d) \) be a map satisfying properties (P1), (P2) and (P3) with respect to closed subset \(S \subset B_{\sigma}(x_*) \). The map \(v \) is said to satisfy the codimension 2 property of the tangent map with respect to \(S \) if for any \(x \in S \) and for \(v_0 \) the limit of the blow-up maps of \(v \) at \(x \) as in (P2), we have
\[
\dim_H(S_0(v_0)) \leq n - 2.
\]

Theorem 71 Let \(v : B_{\sigma}(x_*) \to (Y, d) \) be a map satisfying properties (P1), (P2) and (P3) with respect to \(S \subset B_{\sigma}(x_*) \). If \(v \) also satisfies the order gap property with respect to \(S \) as in Definition 66 and the codimension 2 property of the tangent map with respect to \(S \) as in Definition 70, then
\[
\dim_H(S_0(v) \cap S) \leq n - 2.
\]

Proof. Since \(v \) satisfies the order gap property, we can choose \(x \in S_0(v) \) as in Lemma 69 such that
\[
\dim_H(S_0(v) \cap S) \leq \dim_H(S_0(v_0))
\]
where \(v_0 \) as (P2). The assumption that \(v \) satisfies the codimension 2 property of the tangent map implies \(\dim_H(S_0(v_0)) \leq n - 2 \). Q.E.D.
References

