Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct a left, right, or two-sided inverse whenever these exist.

(i) The function \(f : \mathbb{N} \to \mathbb{N} \) defined by \(f(x) = x^2 \).
(ii) The function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^2 \).
(iii) The function \(f : \mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q} \) defined by \((a, b) \mapsto \frac{a}{b}\); here \(\mathbb{Z}_{>0} \) denotes the set of positive integers.
(iv) The function \(\pi_B : A \times B \to B \) defined by \(\pi_B(a, b) = b \).
(v) The function \(\pi : A \to A_{\neq} \) associated to a non-identity equivalence relation \(\sim \) on \(A \) defined by \(\pi(a) = [a]_{\sim} \).
(vi) The function \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) defined by \(f(a, b) = a + b \).
(vii) Writing \(\chi : \mathbb{P}(A) \to 2 \) in some natural way.

Exercise 2. Write \(2 = \{\perp, \top\} \) or \(2 = \{0, 1\} \) for the set with two elements. (Your choice which notation you want to use for its elements.) Let \(\mathbb{P}(A) \) denote the set of all subsets of a set \(A \) and let \(2^A \) denote the set of functions from \(A \) to \(2 \).

(i) Let \(S \subseteq A \). Define a function \(\chi_S : A \to 2 \) that is related to \(S \) in some natural way.
(ii) Use part (i) to define a natural function \(\chi : \mathbb{P}(A) \to 2^A \).
(iii) Show that the function \(\chi : \mathbb{P}(A) \to 2^A \) you’ve defined in part (ii) is a bijection.

Exercise 3. Write \(B^A \) for the set of functions from \(A \) to \(B \).

(i) Express the cardinality of \(B^A \) in terms of the cardinalities of \(A \) and \(B \), assuming these are finite sets.
(ii) Express the cardinality of the powerset \(2^A \) of \(A \) in terms of the cardinality of \(A \), assuming that \(A \) is a finite set.
(iii) Explain why (ii) is a special case of (i).

Exercise 4. How many functions are there from a set of \(n \) elements to itself? How many bijections are there between a set with \(n \) elements and itself?

Exercise 5.

(i) Let \(f : A \to B \) be a function that has a left inverse \(g : B \to A \) and also a right inverse \(h : B \to A \). Prove that \(h = g \).

Exercise 6.

(i) For any function \(f : A \to B \) define an explicit isomorphism between \(A \) and the graph \(\Gamma_f \subseteq A \times B \).
(ii) Define a natural function \(\Gamma_f \to B \). Is it necessarily injective? Is it necessarily surjective?

Exercise 7.

(i) For any non-empty set \(A \), define an isomorphism between the set \(A \times A \) and the set \(A^2 \) of functions from the set with two elements to the set \(A \).
(ii) For any non-empty set \(A \) and positive natural number \(n \), define an isomorphism between the \(n \)-fold cartesian product \(\prod_n A := A \times \cdots \times A \) and the set \(A^n \) of functions from the set with \(n \) elements to \(A \).

Exercise 8. Explain in your own words why all sets with three elements are isomorphic and speculate why I don’t care what we call the elements of a 3-element set.

Exercise 9. Suppose \(p : A \to B \) is a surjective function. Explain how the fibers of \(p \) define an equivalence relation on \(A \) and prove that \(B \) is isomorphic to the set of equivalence classes for this equivalence relation.

1 If the equivalence relation is defined by \(x \sim y \) iff \(x = y \), then \(\pi \) is the identity function. Please exclude this case.
2 If the function you’ve defined in part (i) is not a bijection, you might need to redefine the function \(\chi \).
3 In fact, it is for any set \(A \) and any set \(I \) (possible empty and possibly infinite) it is also the case that the product \(\prod_I A \) is isomorphic to the set of functions \(A^I \). The proof is by the same argument, but requires somewhat more complicated notation. In fact there is a sense in which the product \(\prod_I A \) of the indexed family of sets \((A)_{i\in I}\) is defined to be the set of functions \(A^I \).