Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct a left, right, or two-sided inverse whenever these exist.

(i) The function $f : \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$.
(ii) The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.
(iii) The function $f : \mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q}$ defined by $(a, b) \mapsto \frac{a}{b}$; here $\mathbb{Z}_{>0}$ denotes the set of positive integers.
(iv) The function $\pi_B : A \times B \to B$ defined by $\pi_B(a, b) = b$.
(v) The function $\pi : A \to A/\sim$ associated to an equivalence relation \sim on A defined by $\pi(a) = [a]_\sim$.
(vi) The function from the set of subsets of \mathbb{N} to the set of countably-infinite binary sequences (0, 1, 0, 0, 1, ...) that sends a subset $S \in \mathbb{N}$ to the sequence that has a 1 in the nth coordinate if and only if $n \in S$.
(vii) Writing $10 = \{0, \ldots, 9\}$ and $[0, 1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$, the function $f : 10^{\mathbb{N}} \to [0, 1]$ that sends a sequence of decimal digits $(x_n)_{n \in \mathbb{N}}$ to the real number $0.x_1x_2x_3\ldots$.

Exercise 2. Write B^A for the set of functions from A to B.

(i) Express the cardinality of B^A in terms of the cardinalities of A and B, assuming these are finite sets.
(ii) Express the cardinality of the powerset 2^A of A in terms of the cardinality of A, assuming that A is a finite set.
(iii) Explain why (ii) is a special case of (i).

Exercise 3. How many functions are there from a set of n elements to itself? How many bijections are there between a set with n elements and itself?

Exercise 4.

(i) Let $f : A \to B$ be a function that has a left inverse $g : B \to A$ and also a right inverse $h : B \to A$. Prove that $h = g$.
(ii) Prove that $f : A \to B$ is a bijection if and only if f is an isomorphism without using (i).

Exercise 5.

(i) For any function $f : A \to B$ define an explicit isomorphism between A and the graph $\Gamma_f \subset A \times B$.
(ii) Define a natural function $\Gamma_f \to B$. Is it necessarily injective? Is it necessarily surjective?

Exercise 6.

(i) Define an isomorphism between any set A and the set A^1 of functions from a singleton set to A.
(ii) Argue that a function $f : A \to B$ is uniquely determined by its collection of composites with functions $1 \to A$.

Emily Riehl
Exercise 7. Explain in your own words why all sets with three elements are isomorphic and speculate why I don’t care what we call the elements of a 3-element set.

Exercise 8. Suppose \(p: A \to B \) is a surjective function. Explain how the fibers of \(p \) define an equivalence relation on \(A \) and prove that \(B \) is isomorphic to the set of equivalence classes for this equivalence relation.