Math 411: Honors Algebra I
Problem Set 1
due: September 11, 2019
Emily Riehl

Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct a left, right, or two-sided inverse whenever these exist.
(i) The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=x^{2}$.
(ii) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.
(iii) The function $f: \mathbb{Z} \times \mathbb{Z}_{>0} \rightarrow \mathbb{Q}$ defined by $(a, b) \mapsto \frac{a}{b}$; here $\mathbb{Z}_{>0}$ denotes the set of positive integers.
(iv) The function $\pi_{B}: A \times B \rightarrow B$ defined by $\pi_{B}(a, b)=b$.
(v) The function $\pi: A \rightarrow A_{/ \sim}$ associated to an equivalence relation \sim on A defined by $\pi(a)=[a]_{\sim}$.
(vi) The function from the set of subsets of \mathbb{N} to the set of countably-infinite binary sequences $(0,1,0,0,0,1, \ldots)$ that sends a subset $S \subset \mathbb{N}$ to the sequence that has a 1 in the nth coordinate if and only if $n \in S$.
(vii) Writing $10=\{0, \ldots, 9\}$ and $[0,1]=\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$, the function $f: 10^{\mathbb{N}} \rightarrow[0,1]$ that sends a sequence of decimal digits $\left(x_{n}\right)_{n \in \mathbb{N}}$ to the real number 0. $x_{1} x_{2} x_{3} \ldots$.
Proof. (i) is injective but not surjective (since 2 has no integer square root). A left inverse is defined by sending each perfect square to its positive square root and sending non-square integers to 1 .
(ii) is not injective (since 2 and -2 have the same square) and not surjective (since negative reals have no real square root).
(iii) This function is surjective (since every rational can be written as a fraction) but not injective since $(2,1)$ and $(4,2)$ have the same image. An inverse function sends each rational number to the pair (n, d) comprised of its numerator n and denominator d in lowest terms.
(iv) The projection function is surjective but not injective (unless A is empty or a singleton). A right inverse is given by fixing any element $a \in A$ and defining $s: B \rightarrow A \times B$ by $b \mapsto(a, b)$.
(v) The quotient function is surjective but not frequently injective. A right inverse is defined by sending each equivalence class to any representative element.
(v) This function is a bijection. The inverse function sends a sequence $s=\left(s_{i}\right)_{i \in \mathbb{N}}$ to the subset $S=\left\{i \in \mathbb{N} \mid s_{i}=1\right\}$.
(vi) This function is surjective (since every real number can be written as a decimal) but not injective (since $0.099999 \ldots=$ 0.1). A right inverse sends each real number to its "shortest" decimal representation, the one that ends in a 1 rather than in repeating 9 s .

Exercise 2. Write $2=\{\perp, \top\}$ or $2=\{0,1\}$ for the set with two elements. (Your choice which notation you want to use for its elements.)
(i) Let $S \subset A$. Define a function $\chi_{S}: A \rightarrow 2$ that is related to S in some natural way.
(ii) Use part (i) to define a natural function $\chi: P(A) \rightarrow 2^{A}$.
(iii) Show that the function $\chi: P(A) \rightarrow 2^{A}$ that you've defined in part (ii) is a bijection. ${ }^{1}$

Proof. (i) We define the assignment $\chi_{S}: A \rightarrow 2$ as follows: $a \mapsto \begin{cases}\top, & a \in S \\ \perp, & a \notin S\end{cases}$
As we can see this does determine a function for every $a \in A$ is assigned an element of 2 and moreover this assignment is unique.
(ii) Now we must define a function assigning $S \in P(A)$ to a function $A \rightarrow 2$. That means for $S \in P(A)$, or equivalently $S \subseteq A$, we may assigned the element $\chi_{S} \in 2^{A}$ defined in part (a) - we proved already that χ_{S} is a function and so it is an element of the set 2^{A}. We can see that the way in which the assignment is done guarantees that every element $S \in P(A)$ is assigned to some element of 2^{A} and that this assignment is unique. Thus we have defined a function $\chi: P(A) \rightarrow 2^{A}$ via $\chi(S)=\chi_{S}$.
(iii) To prove that this determines a bijection we will define a function $k: 2^{A} \rightarrow P(A)$ and demonstrate that $k \circ \chi=\operatorname{id}_{P(A)}$ and $\chi \circ k=\mathrm{id}_{2} A$.

[^0]Our function k is the assignment $f \in 2^{A} \mapsto\{a \in A \mid f(a)=T\}$. We note that $\{a \in A \mid f(a)=T\} \subseteq A$ by construction and so $\{a \in A \mid f(a)=T\} \in P(A)$ as desired, and moreover this assignment works for every f and is uniquely determined. Thus $k: 2^{A} \rightarrow P(A)$ is a function.

Now we check $k \circ \chi=\operatorname{id}_{P(A)}$. Given $S \in P(A)$ we see that $(k \circ \chi)(S)=k(\chi(S))=k\left(\chi_{S}\right)=\left\{a \in A \mid \chi_{S}(a)=\mathrm{T}\right\}$. If we unwind the definition of χ_{S} we see that $\chi_{S}(a)=\top \leftrightarrow a \in S$ and so we may simplify $\left\{a \in A \mid \chi_{S}(a)=T\right\}=$ $\{a \in A \mid a \in S\}=S-$ that is, $(k \circ \chi)(S)=S$ as desired.

Finally we check that $\chi \circ k=\operatorname{id}_{2^{A}}$. Given $f \in 2^{A}$ we have $(\chi \circ k)(f)=\chi(k(f))=\chi_{\{a \in A \mid f(a)=T\}}$. If we want to prove that $\chi(k(f))=\operatorname{id}_{2 A}(f)=f$ we must now compare the two functions $\chi(k(f))$ and f for equality. This means ensuring that they have the same values on every element $a \in A$. Thus we expand

$$
\chi_{\{a \in A \mid f(a)=\top\}}(x)= \begin{cases}\mathrm{T}, & x \in\{a \in A \mid f(a)=\mathrm{T}\} \\ \perp, & x \notin\{a \in A \mid f(a)=\mathrm{T}\}\end{cases}
$$

Looking at this we notice that $x \in\{a \in A \mid f(a)=T\} \leftrightarrow f(x)=\top$ and similarly $x \notin\{a \in A \mid f(a)=\top\} \leftrightarrow$ $\neg(f(x)=T)$. Now we appeal to a decision procedure on 2 to transform $\neg(f(x)=T)$ into the logically equivalent $f(x)=\perp$. With these simplifications we may rewrite our expanded χ above as

$$
\chi_{\{a \in A \mid f(a)=\top\}}(x)=\left\{\begin{array}{ll}
\top, & f(x)=\top \\
\perp, & f(x)=\perp
\end{array}\right\}=f(x)
$$

Whence $\chi(k(f))=\operatorname{id}_{2}(f)$ and so k, χ witness a bijection between $P(A)$ and 2^{A}.

Exercise 3. Write B^{A} for the set of functions from A to B.
(i) Express the cardinality of B^{A} in terms of the cardinalities of A and B, assuming these are finite sets.
(ii) Express the cardinality of the powerset 2^{A} of A in terms of the cardinality of A, assuming that A is a finite set.
(iii) Explain why (ii) is a special case of (i).

Proof. The cardinality is $|B|^{|A|}$ since for each element of A there are $|B|$ choices for its image.
The cardinality of the powerset is $2^{|A|}$ since for each element of A we have two choices - whether or not it is in the subset - and each choice determines a different subset.

There is a bijection between the powerset and the set of functions from A to the set $2=\{0,1\}$, which is why (ii) is a special case of (i).
Exercise 4. How many functions are there from a set of n elements to itself? How many bijections are there between a set with n elements and itself?

Proof. By part (i) of the previous problem there are n^{n} functions from the set of n elements to itself. Such a function is a bijection iff there are no repeated outputs. ${ }^{2}$ So to define a bijection you have n choices for the image of the 1st element, $n-1$ for the image of the $2 \mathrm{nd}, n-2$ for the image of the third, etc. Thus there are $n!$ bijections.

Exercise 5.

(i) Let $f: A \rightarrow B$ be a function that has a left inverse $g: B \rightarrow A$ and also a right inverse $h: B \rightarrow A$. Prove that $h=g$.
(ii) Prove that $f: A \rightarrow B$ is a bijection if and only if f is an isomorphism without using (i).

Proof. Because g is a left inverse, $g \circ f=1_{A}$. Because h is a right inverse $f \circ h=1_{B}$. Now since composition is associative and unital we have

$$
h=\mathrm{id}_{A} \circ h=(g \circ f) \circ h=g \circ(f \circ h)=g \circ \mathrm{id}_{B}=g .
$$

If f is a bijection then for each $b \in B$ there exists a unique $a \in A$ so that $f(a)=b$. Define $f^{-1}(b)$ to be this a. Then by construction $f\left(f^{-1}(b)\right)=f(a)=b$. We see also that $a=f^{-1}(f(a))$ because both a and $f^{-1}(f(a))$ are defined to be elements of A whose image under f is $f(a)$ and uniqueness of the bijection says that $f(a) \in B$ can have at most one preimage.

Exercise 6.

(i) For any function $f: A \rightarrow B$ define an explicit isomorphism between A and the graph $\Gamma_{f} \subset A \times B$.

[^1](ii) Define a natural function $\Gamma_{f} \rightarrow B$. Is it necessarily injective? Is it necessarily surjective?

Proof. Define a function $\phi: A \rightarrow \Gamma_{f}$ by $\phi(a)=(a, f(a))$. The inverse isomorphism is $\pi_{A}: \Gamma_{f} \rightarrow A$ defined by projection onto the first coordinate.

The natural function $\Gamma_{f} \rightarrow B$ is projection onto the second coordinate. This is injective if and only if $f: A \rightarrow B$ is injective and surjective if and only if $f: A \rightarrow B$ is surjective.

Exercise 7.

(i) For any non-empty set A, define an isomorphism between the set $A \times A$ and the set A^{2} of functions from the set with two elements to the set A.
(ii) For any non-empty set A and positive natural number n, define an isomorphism between the n-fold cartesian product $\prod_{n} A:=A \times \cdots \times A$ and the set A^{n} of functions from the set with n elements to $A{ }^{3}$
Proof. (i) Write $2=\{0,1\}$ for the two elements of the two-element set. The isomorphism $\phi: A \times A \rightarrow A^{2}$ is defined by declaring $\phi(a, b): 2 \rightarrow A$ to be the function that sends 0 to a and sends 1 to b. The inverse isomorphism $\psi: A^{2} \rightarrow A \times A$ is defined by declaring that $\psi(f)=(f(0), f(1))$ for each function $f: 2 \rightarrow A$.

Note that $\psi(\phi(a, b))=(a, b)$ since $\phi(a, b)$ is the function that sends 0 to a and 1 to b. Also note that $\phi(\psi(f))=$ $\phi(f(0), f(1)): 2 \rightarrow A$ is the function that sends 0 to $f(0)$ and sends 1 to $f(1)$. But this is exactly what the function f does. Thus $\phi(\psi(f))=f$. This proves that ψ and ϕ define an isomorphism
(ii) The construction and the proof are exactly the same as for (i) but with slightly more elaborate notation. Let $n=\{0,1, \ldots, n-1\}$ and define $\phi: A \times \cdots \times A \rightarrow A^{n}$ to be the function that sends $\left(a_{1}, \ldots, a_{n}\right)$ to the function that sends i to a_{n+i}. Define $\psi: A^{n} \rightarrow A \times \cdots A$ to be the function that sends $f: n \rightarrow A$ to the n-tuple $(f(0), f(1), \ldots, f(n-1))$. The computation above again verifies that these functions define inverse isomorphisms.

Exercise 8. Explain in your own words why all sets with three elements are isomorphic and speculate why I don't care what we call the elements of a 3-element set.

Proof. Given any two sets of three elements it is always possible to define a bijection between them. Thus, all three element sets are isomorphic. A category theorist generally doesn't distinguish between two isomorphic objects of the same category, which is why I don't care what we call the elements of a 3 element set. ${ }^{4}$
Exercise 9. Suppose $p: A \rightarrow B$ is a surjective function. Explain how the fibers of p define an equivalence relation on A and prove that B is isomorphic to the set of equivalence classes for this equivalence relation.

Proof. This is a special case of the canonical decomposition theorem we discussed in class. Define $a \sim_{p} a^{\prime}$ if and only if $p(a)=p\left(a^{\prime}\right)$. Since p is surjective $B=\operatorname{im}(p)$ and we showed in class that $A_{/ \sim p} \cong \operatorname{im}(p)=B$. Explicitly, $A_{/ \sim p}$ may be identified with the set of fibers for p, i.e.,

$$
A_{/ \sim p} \cong\left\{p^{-1}(b) \subset A \mid b \in B\right\} \subset 2^{A}
$$

and there is always a bijection between the set of fibers of a function and the set of elements in its image.

[^2][^3]
[^0]: ${ }^{1}$ If the function you've defined in part (ii) is not a bijection, you might need to redefine the function χ.

[^1]: ${ }^{2}$ This implies automatically that there are no repeated inputs because the sizes of the set of inputs and the set of outputs are both the finite number n.

[^2]: Dept. of Mathematics, Johns Hopkins Univ., 3400 N Charles St, Baltimore, MD 21218
 Email address: eriehl@math.jhu.edu

[^3]: ${ }^{3}$ In fact, it i for any set A and any set I (possible empty and possibly infinite) it is also the case that the product $\prod_{I} A$ is isomorphic to the set of functions A^{I}. The proof is by the same argument, but requires somewhat more complicated notation. In fact there is a sense in which the product $\prod_{I} A$ of the indexed family of sets $(A)_{i \in I}$ is defined to be the set of functions A^{I}.
 ${ }^{4}$ 'So if you do care, let me know. I'll happily abide by your suggestion!

