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Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct
a left, right, or two-sided inverse whenever these exist.

(i) The function 𝑓∶ ℕ → ℕ defined by 𝑓(𝑥) = 𝑥2.
(ii) The function 𝑓∶ ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2.
(iii) The function 𝑓∶ ℤ × ℤ>0 → ℚ defined by (𝑎, 𝑏) ↦ 𝑎

𝑏 ; here ℤ>0 denotes the set of positive integers.
(iv) The function 𝜋𝐵 ∶ 𝐴 × 𝐵 → 𝐵 defined by 𝜋𝐵(𝑎, 𝑏) = 𝑏.
(v) The function 𝜋∶ 𝐴 → 𝐴/∼ associated to an equivalence relation ∼ on 𝐴 defined by 𝜋(𝑎) = [𝑎]∼.
(vi) The function from the set of subsets of ℕ to the set of countably-infinite binary sequences (0, 1, 0, 0, 0, 1, …) that

sends a subset 𝑆 ⊂ ℕ to the sequence that has a 1 in the 𝑛th coordinate if and only if 𝑛 ∈ 𝑆.
(vii) Writing 10 = {0, … , 9} and [0, 1] = {𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 ≤ 1}, the function 𝑓∶ 10ℕ → [0, 1] that sends a sequence of

decimal digits (𝑥𝑛)𝑛∈ℕ to the real number 0.𝑥1𝑥2𝑥3….

Proof. (i) is injective but not surjective (since 2 has no integer square root). A left inverse is defined by sending each perfect
square to its positive square root and sending non-square integers to 1.

(ii) is not injective (since 2 and −2 have the same square) and not surjective (since negative reals have no real square
root).

(iii) This function is surjective (since every rational can be written as a fraction) but not injective since (2, 1) and (4, 2)
have the same image. An inverse function sends each rational number to the pair (𝑛, 𝑑) comprised of its numerator 𝑛 and
denominator 𝑑 in lowest terms.

(iv) The projection function is surjective but not injective (unless 𝐴 is empty or a singleton). A right inverse is given
by fixing any element 𝑎 ∈ 𝐴 and defining 𝑠 ∶ 𝐵 → 𝐴 × 𝐵 by 𝑏 ↦ (𝑎, 𝑏).

(v) The quotient function is surjective but not frequently injective. A right inverse is defined by sending each equiva-
lence class to any representative element.

(v) This function is a bijection. The inverse function sends a sequence 𝑠 = (𝑠𝑖)𝑖∈ℕ to the subset 𝑆 = {𝑖 ∈ ℕ ∣ 𝑠𝑖 = 1}.
(vi) This function is surjective (since every real number can bewritten as a decimal) but not injective (since 0.099999… =

0.1). A right inverse sends each real number to its “shortest” decimal representation, the one that ends in a 1 rather than
in repeating 9s. �

Exercise 2. Write 2 = {⊥,⊤} or 2 = {0, 1} for the set with two elements. (Your choice which notation you want to use for
its elements.)

(i) Let 𝑆 ⊂ 𝐴. Define a function 𝜒𝑆 ∶ 𝐴 → 2 that is related to 𝑆 in some natural way.
(ii) Use part (i) to define a natural function 𝜒∶ 𝑃(𝐴) → 2𝐴.
(iii) Show that the function 𝜒∶ 𝑃(𝐴) → 2𝐴 that you’ve defined in part (ii) is a bijection.¹

Proof. (i) We define the assignment 𝜒𝑆 ∶ 𝐴 → 2 as follows: 𝑎 ↦
⎧⎪⎨
⎪⎩
⊤, 𝑎 ∈ 𝑆
⊥, 𝑎 ∉ 𝑆

As we can see this does determine a function for every 𝑎 ∈ 𝐴 is assigned an element of 2 and moreover this
assignment is unique.

(ii) Now we must define a function assigning 𝑆 ∈ 𝑃(𝐴) to a function 𝐴 → 2. That means for 𝑆 ∈ 𝑃(𝐴), or equivalently
𝑆 ⊆ 𝐴, we may assigned the element 𝜒𝑆 ∈ 2𝐴 defined in part (a) – we proved already that 𝜒𝑆 is a function and so it
is an element of the set 2𝐴. We can see that the way in which the assignment is done guarantees that every element
𝑆 ∈ 𝑃(𝐴) is assigned to some element of 2𝐴 and that this assignment is unique. Thus we have defined a function
𝜒∶ 𝑃(𝐴) → 2𝐴 via 𝜒(𝑆) = 𝜒𝑆.

(iii) To prove that this determines a bijectionwewill define a function 𝑘 ∶ 2𝐴 → 𝑃(𝐴) and demonstrate that 𝑘∘𝜒 = id𝑃(𝐴)
and 𝜒 ∘ 𝑘 = id2𝐴 .

¹If the function you’ve defined in part (ii) is not a bijection, you might need to redefine the function 𝜒.
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Our function 𝑘 is the assignment 𝑓 ∈ 2𝐴 ↦ {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤}. We note that {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤} ⊆ 𝐴 by
construction and so {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤} ∈ 𝑃(𝐴) as desired, and moreover this assignment works for every 𝑓 and is
uniquely determined. Thus 𝑘 ∶ 2𝐴 → 𝑃(𝐴) is a function.

Now we check 𝑘 ∘ 𝜒 = id𝑃(𝐴). Given 𝑆 ∈ 𝑃(𝐴) we see that (𝑘 ∘ 𝜒)(𝑆) = 𝑘(𝜒(𝑆)) = 𝑘(𝜒𝑆) = {𝑎 ∈ 𝐴 ∣ 𝜒𝑆(𝑎) = ⊤}.
If we unwind the definition of 𝜒𝑆 we see that 𝜒𝑆(𝑎) = ⊤ ↔ 𝑎 ∈ 𝑆 and so we may simplify {𝑎 ∈ 𝐴 ∣ 𝜒𝑆(𝑎) = ⊤} =
{𝑎 ∈ 𝐴 ∣ 𝑎 ∈ 𝑆} = 𝑆 – that is, (𝑘 ∘ 𝜒)(𝑆) = 𝑆 as desired.

Finally we check that 𝜒 ∘ 𝑘 = id2𝐴 . Given 𝑓 ∈ 2𝐴 we have (𝜒 ∘ 𝑘)(𝑓) = 𝜒(𝑘(𝑓)) = 𝜒{𝑎∈𝐴∣𝑓(𝑎)=⊤}. If we want to
prove that 𝜒(𝑘(𝑓)) = id2𝐴(𝑓) = 𝑓 we must now compare the two functions 𝜒(𝑘(𝑓)) and 𝑓 for equality. This means
ensuring that they have the same values on every element 𝑎 ∈ 𝐴. Thus we expand

𝜒{𝑎∈𝐴∣𝑓(𝑎)=⊤}(𝑥) =
⎧⎪⎨
⎪⎩
⊤, 𝑥 ∈ {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤}
⊥, 𝑥 ∉ {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤}

Looking at this we notice that 𝑥 ∈ {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤} ↔ 𝑓(𝑥) = ⊤ and similarly 𝑥 ∉ {𝑎 ∈ 𝐴 ∣ 𝑓(𝑎) = ⊤} ↔
¬(𝑓(𝑥) = ⊤). Now we appeal to a decision procedure on 2 to transform ¬(𝑓(𝑥) = ⊤) into the logically equivalent
𝑓(𝑥) = ⊥. With these simplifications we may rewrite our expanded 𝜒 above as

𝜒{𝑎∈𝐴∣𝑓(𝑎)=⊤}(𝑥) =
⎧⎪⎨
⎪⎩
⊤, 𝑓(𝑥) = ⊤
⊥, 𝑓(𝑥) = ⊥

⎫⎪⎬
⎪⎭ = 𝑓(𝑥)

Whence 𝜒(𝑘(𝑓)) = id2𝐴(𝑓) and so 𝑘, 𝜒 witness a bijection between 𝑃(𝐴) and 2𝐴.
�

Exercise 3. Write 𝐵𝐴 for the set of functions from 𝐴 to 𝐵.
(i) Express the cardinality of 𝐵𝐴 in terms of the cardinalities of 𝐴 and 𝐵, assuming these are finite sets.
(ii) Express the cardinality of the powerset 2𝐴 of 𝐴 in terms of the cardinality of 𝐴, assuming that 𝐴 is a finite set.
(iii) Explain why (ii) is a special case of (i).

Proof. The cardinality is |𝐵||𝐴| since for each element of 𝐴 there are |𝐵| choices for its image.
The cardinality of the powerset is 2|𝐴| since for each element of 𝐴 we have two choices — whether or not it is in the

subset — and each choice determines a different subset.
There is a bijection between the powerset and the set of functions from 𝐴 to the set 2 = {0, 1}, which is why (ii) is a

special case of (i). �

Exercise 4. How many functions are there from a set of 𝑛 elements to itself? How many bijections are there between a set
with 𝑛 elements and itself?

Proof. By part (i) of the previous problem there are 𝑛𝑛 functions from the set of 𝑛 elements to itself. Such a function is a
bijection iff there are no repeated outputs.² So to define a bijection you have 𝑛 choices for the image of the 1st element,
𝑛 − 1 for the image of the 2nd, 𝑛 − 2 for the image of the third, etc. Thus there are 𝑛! bijections. �

Exercise 5.
(i) Let 𝑓∶ 𝐴 → 𝐵 be a function that has a left inverse 𝑔∶ 𝐵 → 𝐴 and also a right inverse ℎ∶ 𝐵 → 𝐴. Prove that ℎ = 𝑔.
(ii) Prove that 𝑓∶ 𝐴 → 𝐵 is a bijection if and only if 𝑓 is an isomorphism without using (i).

Proof. Because 𝑔 is a left inverse, 𝑔 ∘ 𝑓 = 1𝐴. Because ℎ is a right inverse 𝑓 ∘ ℎ = 1𝐵. Now since composition is associative
and unital we have

ℎ = id𝐴 ∘ ℎ = (𝑔 ∘ 𝑓) ∘ ℎ = 𝑔 ∘ (𝑓 ∘ ℎ) = 𝑔 ∘ id𝐵 = 𝑔.
If 𝑓 is a bijection then for each 𝑏 ∈ 𝐵 there exists a unique 𝑎 ∈ 𝐴 so that 𝑓(𝑎) = 𝑏. Define 𝑓−1(𝑏) to be this 𝑎. Then

by construction 𝑓(𝑓−1(𝑏)) = 𝑓(𝑎) = 𝑏. We see also that 𝑎 = 𝑓−1(𝑓(𝑎)) because both 𝑎 and 𝑓−1(𝑓(𝑎)) are defined to
be elements of 𝐴 whose image under 𝑓 is 𝑓(𝑎) and uniqueness of the bijection says that 𝑓(𝑎) ∈ 𝐵 can have at most one
preimage. �

Exercise 6.
(i) For any function 𝑓∶ 𝐴 → 𝐵 define an explicit isomorphism between 𝐴 and the graph Γ𝑓 ⊂ 𝐴 × 𝐵.

²This implies automatically that there are no repeated inputs because the sizes of the set of inputs and the set of outputs are both the finite number
𝑛.
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(ii) Define a natural function Γ𝑓 → 𝐵. Is it necessarily injective? Is it necessarily surjective?

Proof. Define a function 𝜙∶ 𝐴 → Γ𝑓 by 𝜙(𝑎) = (𝑎, 𝑓(𝑎)). The inverse isomorphism is 𝜋𝐴 ∶ Γ𝑓 → 𝐴 defined by projection
onto the first coordinate.

The natural function Γ𝑓 → 𝐵 is projection onto the second coordinate. This is injective if and only if 𝑓∶ 𝐴 → 𝐵 is
injective and surjective if and only if 𝑓∶ 𝐴 → 𝐵 is surjective. �

Exercise 7.
(i) For any non-empty set 𝐴, define an isomorphism between the set 𝐴 × 𝐴 and the set 𝐴2 of functions from the set

with two elements to the set 𝐴.
(ii) For any non-empty set𝐴 and positive natural number 𝑛, define an isomorphism between the 𝑛-fold cartesian prod-

uct ∏𝑛𝐴 ≔ 𝐴 ×⋯×𝐴 and the set 𝐴𝑛 of functions from the set with 𝑛 elements to 𝐴.³

Proof. (i) Write 2 = {0, 1} for the two elements of the two-element set. The isomorphism 𝜙∶ 𝐴 × 𝐴 → 𝐴2 is defined by
declaring 𝜙(𝑎, 𝑏) ∶ 2 → 𝐴 to be the function that sends 0 to 𝑎 and sends 1 to 𝑏. The inverse isomorphism𝜓∶ 𝐴2 → 𝐴×𝐴
is defined by declaring that 𝜓(𝑓) = (𝑓(0), 𝑓(1)) for each function 𝑓∶ 2 → 𝐴.

Note that 𝜓(𝜙(𝑎, 𝑏)) = (𝑎, 𝑏) since 𝜙(𝑎, 𝑏) is the function that sends 0 to 𝑎 and 1 to 𝑏. Also note that 𝜙(𝜓(𝑓)) =
𝜙(𝑓(0), 𝑓(1)) ∶ 2 → 𝐴 is the function that sends 0 to 𝑓(0) and sends 1 to 𝑓(1). But this is exactly what the function 𝑓
does. Thus 𝜙(𝜓(𝑓)) = 𝑓. This proves that 𝜓 and 𝜙 define an isomorphism

(ii) The construction and the proof are exactly the same as for (i) but with slightly more elaborate notation. Let
𝑛 = {0, 1, … , 𝑛 − 1} and define 𝜙∶ 𝐴 ×⋯×𝐴 → 𝐴𝑛 to be the function that sends (𝑎1, … , 𝑎𝑛) to the function that sends
𝑖 to 𝑎𝑛+𝑖. Define 𝜓∶ 𝐴𝑛 → 𝐴 ×⋯𝐴 to be the function that sends 𝑓∶ 𝑛 → 𝐴 to the 𝑛-tuple (𝑓(0), 𝑓(1), … , 𝑓(𝑛 − 1)).
The computation above again verifies that these functions define inverse isomorphisms. �

Exercise 8. Explain in your own words why all sets with three elements are isomorphic and speculate why I don’t care
what we call the elements of a 3-element set.

Proof. Given any two sets of three elements it is always possible to define a bijection between them. Thus, all three element
sets are isomorphic. A category theorist generally doesn’t distinguish between two isomorphic objects of the same category,
which is why I don’t care what we call the elements of a 3 element set.⁴ �

Exercise 9. Suppose 𝑝∶ 𝐴 → 𝐵 is a surjective function. Explain how the fibers of 𝑝 define an equivalence relation on 𝐴
and prove that 𝐵 is isomorphic to the set of equivalence classes for this equivalence relation.

Proof. This is a special case of the canonical decomposition theorem we discussed in class. Define 𝑎 ∼𝑝 𝑎′ if and only if
𝑝(𝑎) = 𝑝(𝑎′). Since 𝑝 is surjective 𝐵 = im(𝑝) and we showed in class that 𝐴/∼𝑝 ≅ im(𝑝) = 𝐵. Explicitly, 𝐴/∼𝑝 may be
identified with the set of fibers for 𝑝, i.e.,

𝐴/∼𝑝 ≅ {𝑝−1(𝑏) ⊂ 𝐴 ∣ 𝑏 ∈ 𝐵} ⊂ 2𝐴,

and there is always a bijection between the set of fibers of a function and the set of elements in its image. �
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³In fact, it i for any set 𝐴 and any set 𝐼 (possible empty and possibly infinite) it is also the case that the product ∏𝐼𝐴 is isomorphic to the set of
functions𝐴𝐼. The proof is by the same argument, but requires somewhat more complicated notation. In fact there is a sense in which the product∏𝐼𝐴
of the indexed family of sets (𝐴)𝑖∈𝐼 is defined to be the set of functions 𝐴𝐼.

⁴So if you do care, let me know. I’ll happily abide by your suggestion!
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