Math 411: Honors Algebra I Problem Set 1 due: September 11, 2019

Emily Riehl

Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct a left, right, or two-sided inverse whenever these exist.

- (i) The function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$.
- (ii) The function $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$.
- (iii) The function $f: \mathbb{Z} \times \mathbb{Z}_{>0} \to \mathbb{Q}$ defined by $(a, b) \mapsto \frac{a}{b}$; here $\mathbb{Z}_{>0}$ denotes the set of positive integers.
- (iv) The function $\pi_B: A \times B \to B$ defined by $\pi_B(a, b) = b$.
- (v) The function $\pi: A \to A_{/\sim}$ associated to an equivalence relation ~ on A defined by $\pi(a) = [a]_{\sim}$.
- (vi) The function from the set of subsets of \mathbb{N} to the set of countably-infinite binary sequences (0, 1, 0, 0, 0, 1, ...) that sends a subset $S \subset \mathbb{N}$ to the sequence that has a 1 in the *n*th coordinate if and only if $n \in S$.
- (vii) Writing $10 = \{0, \dots, 9\}$ and $[0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$, the function $f: 10^{\mathbb{N}} \to [0, 1]$ that sends a sequence of decimal digits $(x_n)_{n \in \mathbb{N}}$ to the real number $0.x_1x_2x_3 \dots$

Proof. (i) is injective but not surjective (since 2 has no integer square root). A left inverse is defined by sending each perfect square to its positive square root and sending non-square integers to 1.

(ii) is not injective (since 2 and -2 have the same square) and not surjective (since negative reals have no real square root).

(iii) This function is surjective (since every rational can be written as a fraction) but not injective since (2, 1) and (4, 2) have the same image. An inverse function sends each rational number to the pair (n, d) comprised of its numerator n and denominator d in lowest terms.

(iv) The projection function is surjective but not injective (unless *A* is empty or a singleton). A right inverse is given by fixing any element $a \in A$ and defining $s: B \to A \times B$ by $b \mapsto (a, b)$.

(v) The quotient function is surjective but not frequently injective. A right inverse is defined by sending each equivalence class to any representative element.

(v) This function is a bijection. The inverse function sends a sequence $s = (s_i)_{i \in \mathbb{N}}$ to the subset $S = \{i \in \mathbb{N} \mid s_i = 1\}$.

(vi) This function is surjective (since every real number can be written as a decimal) but not injective (since 0.099999 ... = 0.1). A right inverse sends each real number to its "shortest" decimal representation, the one that ends in a 1 rather than in repeating 9s.

Exercise 2. Write $2 = \{\bot, \top\}$ or $2 = \{0, 1\}$ for the set with two elements. (Your choice which notation you want to use for its elements.)

- (i) Let $S \subset A$. Define a function $\chi_S \colon A \to 2$ that is related to S in some natural way.
- (ii) Use part (i) to define a natural function $\chi: P(A) \to 2^A$.
- (iii) Show that the function $\chi: P(A) \to 2^A$ that you've defined in part (ii) is a bijection.¹

Proof. (i) We define the assignment $\chi_S \colon A \to 2$ as follows: $a \mapsto \begin{cases} \top, & a \in S \\ \bot, & a \notin S \end{cases}$

As we can see this does determine a function for every $a \in A$ is assigned an element of 2 and moreover this assignment is unique.

- (ii) Now we must define a function assigning S ∈ P(A) to a function A → 2. That means for S ∈ P(A), or equivalently S ⊆ A, we may assigned the element χ_S ∈ 2^A defined in part (a) we proved already that χ_S is a function and so it is an element of the set 2^A. We can see that the way in which the assignment is done guarantees that every element S ∈ P(A) is assigned to some element of 2^A and that this assignment is unique. Thus we have defined a function χ: P(A) → 2^A via χ(S) = χ_S.
- (iii) To prove that this determines a bijection we will define a function $k: 2^A \to P(A)$ and demonstrate that $k \circ \chi = id_{P(A)}$ and $\chi \circ k = id_{2A}$.

¹If the function you've defined in part (ii) is not a bijection, you might need to redefine the function χ .

Our function k is the assignment $f \in 2^A \mapsto \{a \in A \mid f(a) = \top\}$. We note that $\{a \in A \mid f(a) = \top\} \subseteq A$ by construction and so $\{a \in A \mid f(a) = \top\} \in P(A)$ as desired, and moreover this assignment works for every f and is uniquely determined. Thus $k: 2^A \to P(A)$ is a function.

Now we check $k \circ \chi = \operatorname{id}_{P(A)}$. Given $S \in P(A)$ we see that $(k \circ \chi)(S) = k(\chi(S)) = k(\chi_S) = \{a \in A \mid \chi_S(a) = \top\}$. If we unwind the definition of χ_S we see that $\chi_S(a) = \top \leftrightarrow a \in S$ and so we may simplify $\{a \in A \mid \chi_S(a) = \top\} = \{a \in A \mid a \in S\} = S$ – that is, $(k \circ \chi)(S) = S$ as desired.

Finally we check that $\chi \circ k = id_{2^A}$. Given $f \in 2^A$ we have $(\chi \circ k)(f) = \chi(k(f)) = \chi_{\{a \in A \mid f(a) = T\}}$. If we want to prove that $\chi(k(f)) = id_{2^A}(f) = f$ we must now compare the two *functions* $\chi(k(f))$ and *f* for equality. This means ensuring that they have the same values on every element $a \in A$. Thus we expand

$$\chi_{\{a \in A \mid f(a) = \top\}}(x) = \begin{cases} \top, & x \in \{a \in A \mid f(a) = \top\} \\ \bot, & x \notin \{a \in A \mid f(a) = \top\} \end{cases}$$

Looking at this we notice that $x \in \{a \in A \mid f(a) = \top\} \leftrightarrow f(x) = \top$ and similarly $x \notin \{a \in A \mid f(a) = \top\} \leftrightarrow \neg(f(x) = \top)$. Now we appeal to a decision procedure on 2 to transform $\neg(f(x) = \top)$ into the logically equivalent $f(x) = \bot$. With these simplifications we may rewrite our expanded χ above as

$$\chi_{\{a \in A \mid f(a) = \top\}}(x) = \begin{cases} \top, & f(x) = \top \\ \bot, & f(x) = \bot \end{cases} = f(x)$$

Whence $\chi(k(f)) = id_{2^A}(f)$ and so k, χ witness a bijection between P(A) and 2^A .

Exercise 3. Write B^A for the set of functions from A to B.

- (i) Express the cardinality of B^A in terms of the cardinalities of A and B, assuming these are finite sets.
- (ii) Express the cardinality of the powerset 2^A of A in terms of the cardinality of A, assuming that A is a finite set.
- (iii) Explain why (ii) is a special case of (i).

Proof. The cardinality is $|B|^{|A|}$ since for each element of A there are |B| choices for its image.

The cardinality of the powerset is $2^{|A|}$ since for each element of A we have two choices — whether or not it is in the subset — and each choice determines a different subset.

There is a bijection between the powerset and the set of functions from A to the set $2 = \{0, 1\}$, which is why (ii) is a special case of (i).

Exercise 4. How many functions are there from a set of *n* elements to itself? How many bijections are there between a set with *n* elements and itself?

Proof. By part (i) of the previous problem there are n^n functions from the set of n elements to itself. Such a function is a bijection iff there are no repeated outputs.² So to define a bijection you have n choices for the image of the 1st element, n - 1 for the image of the 2nd, n - 2 for the image of the third, etc. Thus there are n! bijections.

Exercise 5.

- (i) Let $f: A \to B$ be a function that has a left inverse $g: B \to A$ and also a right inverse $h: B \to A$. Prove that h = g. (ii) Prove that $f: A \to B$ is a bijection if and only if f is an isomorphism without using (i).
- (ii) Prove that $f: A \to B$ is a bijection if and only if f is an isomorphism without using (i).

Proof. Because *g* is a left inverse, $g \circ f = 1_A$. Because *h* is a right inverse $f \circ h = 1_B$. Now since composition is associative and unital we have

$$h = \mathrm{id}_A \circ h = (g \circ f) \circ h = g \circ (f \circ h) = g \circ \mathrm{id}_B = g.$$

If f is a bijection then for each $b \in B$ there exists a unique $a \in A$ so that f(a) = b. Define $f^{-1}(b)$ to be this a. Then by construction $f(f^{-1}(b)) = f(a) = b$. We see also that $a = f^{-1}(f(a))$ because both a and $f^{-1}(f(a))$ are defined to be elements of A whose image under f is f(a) and uniqueness of the bijection says that $f(a) \in B$ can have at most one preimage.

Exercise 6.

(i) For any function $f: A \to B$ define an explicit isomorphism between A and the graph $\Gamma_f \subset A \times B$.

 $^{^{2}}$ This implies automatically that there are no repeated inputs because the sizes of the set of inputs and the set of outputs are both the finite number n.

(ii) Define a natural function $\Gamma_f \rightarrow B$. Is it necessarily injective? Is it necessarily surjective?

Proof. Define a function $\phi: A \to \Gamma_f$ by $\phi(a) = (a, f(a))$. The inverse isomorphism is $\pi_A: \Gamma_f \to A$ defined by projection onto the first coordinate.

The natural function $\Gamma_f \to B$ is projection onto the second coordinate. This is injective if and only if $f: A \to B$ is injective and surjective if and only if $f: A \to B$ is surjective.

Exercise 7.

- (i) For any non-empty set A, define an isomorphism between the set $A \times A$ and the set A^2 of functions from the set with two elements to the set A.
- (ii) For any non-empty set *A* and positive natural number *n*, define an isomorphism between the *n*-fold cartesian product $\prod_{n} A := A \times \cdots \times A$ and the set A^n of functions from the set with *n* elements to A^n .

Proof. (i) Write $2 = \{0, 1\}$ for the two elements of the two-element set. The isomorphism $\phi: A \times A \to A^2$ is defined by declaring $\phi(a, b): 2 \to A$ to be the function that sends 0 to *a* and sends 1 to *b*. The inverse isomorphism $\psi: A^2 \to A \times A$ is defined by declaring that $\psi(f) = (f(0), f(1))$ for each function $f: 2 \to A$.

Note that $\psi(\phi(a, b)) = (a, b)$ since $\phi(a, b)$ is the function that sends 0 to a and 1 to b. Also note that $\phi(\psi(f)) = \phi(f(0), f(1)): 2 \to A$ is the function that sends 0 to f(0) and sends 1 to f(1). But this is exactly what the function f does. Thus $\phi(\psi(f)) = f$. This proves that ψ and ϕ define an isomorphism

(ii) The construction and the proof are exactly the same as for (i) but with slightly more elaborate notation. Let $n = \{0, 1, ..., n-1\}$ and define $\phi: A \times \cdots \times A \to A^n$ to be the function that sends $(a_1, ..., a_n)$ to the function that sends i to a_{n+i} . Define $\psi: A^n \to A \times \cdots \times A$ to be the function that sends $f: n \to A$ to the *n*-tuple (f(0), f(1), ..., f(n-1)). The computation above again verifies that these functions define inverse isomorphisms.

Exercise 8. Explain in your own words why all sets with three elements are isomorphic and speculate why I don't care what we call the elements of a 3-element set.

Proof. Given any two sets of three elements it is always possible to define a bijection between them. Thus, all three element sets are isomorphic. A category theorist generally doesn't distinguish between two isomorphic objects of the same category, which is why I don't care what we call the elements of a 3 element set.⁴

Exercise 9. Suppose $p: A \rightarrow B$ is a surjective function. Explain how the fibers of p define an equivalence relation on A and prove that B is isomorphic to the set of equivalence classes for this equivalence relation.

Proof. This is a special case of the canonical decomposition theorem we discussed in class. Define $a \sim_p a'$ if and only if p(a) = p(a'). Since p is surjective B = im(p) and we showed in class that $A_{/\sim_p} \cong im(p) = B$. Explicitly, $A_{/\sim_p}$ may be identified with the set of fibers for p, i.e.,

$$A_{/\sim_n} \cong \{p^{-1}(b) \subset A \mid b \in B\} \subset 2^A,$$

and there is always a bijection between the set of fibers of a function and the set of elements in its image.

DEPT. OF MATHEMATICS, JOHNS HOPKINS UNIV., 3400 N CHARLES ST, BALTIMORE, MD 21218 *Email address*: eriehl@math.jhu.edu

³In fact, it i for any set A and any set I (possible empty and possibly infinite) it is also the case that the product $\prod_{I} A$ is isomorphic to the set of functions A^{I} . The proof is by the same argument, but requires somewhat more complicated notation. In fact there is a sense in which the product $\prod_{I} A$ of the indexed family of sets $(A)_{i \in I}$ is defined to be the set of functions A^{I} .

⁴So if you *do* care, let me know. I'll happily abide by your suggestion!