Math 411: Honors Algebra |
Problem Set 1
due: September 11, 2019

Emily Riehl

Exercise 1. For each of the following functions determine whether they are injective, surjective, and bijective and construct
a left, right, or two-sided inverse whenever these exist.
(i) The function f: IN — IN defined by f(x) = x2.
(ii) The function f: R — R defined by f(x) = x2.
(iii) The function f: Z X Z.y — Q defined by (a,b) — g; here Z..q denotes the set of positive integers.
(iv) The function mg: A X B — B defined by mg(a,b) = b.
(v) The functiont: A — A/N associated to an equivalence relation ~ on A defined by m(a) = [a]..
(vi) The function from the set of subsets of IN to the set of countably-infinite binary sequences (0,1,0,0,0, 1, ...) that
sends a subset S € IN to the sequence that has a 1 in the #th coordinate if and only if n € S.
(vii) Writing 10 = {0, ...,9} and [0,1] = {x € R | 0 < x < 1}, the function f: 10N — [0, 1] that sends a sequence of
decimal digits (x,,),en to the real number 0.x1x5X3 ...

Proof. (i) is injective but not surjective (since 2 has no integer square root). A left inverse is defined by sending each perfect
square to its positive square root and sending non-square integers to 1.

(ii) is not injective (since 2 and =2 have the same square) and not surjective (since negative reals have no real square
root).

(iii) This function is surjective (since every rational can be written as a fraction) but not injective since (2, 1) and (4, 2)
have the same image. An inverse function sends each rational number to the pair (1, d) comprised of its numerator # and
denominator d in lowest terms.

(iv) The projection function is surjective but not injective (unless A is empty or a singleton). A right inverse is given
by Fixing any elementa € A and def‘ining s:B—> AXB by b (a,b).

(v) The quotient function is surjective but not frequently injective. A right inverse is defined by sending each equiva-
lence class to any representative element.

(v) This function is a bijection. The inverse function sends a sequence s = (5;);en to the subset S = {i € IN | s; = 1}.

(vi) This function is surjective (since every real number can be written as a decimal) but not injective (since 0.099999 ... =
0.1). A right inverse sends each real number to its “shortest” decimal representation, the one that ends in a 1 rather cthan
in repeating 9s. U

Exercise 2. Write2 = {1, T} or 2 = {0, 1} for the set with two elements. (Your choice which notation you want to use for
its elements.)
(i) Let S C A. Define a function xg: A — 2 that is related to S in some natural way.
(ii) Use part (i) to define a natural function x: P(A) — 24
(iii) Show that the function x: P(A) — 24 that you've defined in part (ii) is a bijection.'

T, a€s
1, a¢S

As we can see this does determine a function for every a € A is assigned an element of 2 and morecover this

Proof (i) We define the assignment xs: A — 2 as follows: a — {

assignment is unique.

(i) Now we must define a function assigning S € P(A) to a function A — 2. That means for S € P(A), or equivalently
SC A, we may assigned the element Xs € 24 defined in part (a) — we proved already that Xsisa function and so it
is an element of the set 24, We can sec that the way in which the assignment is done guarantees that every element
S € P(A) is assigned to some element of 24 and that this assignment is unique. Thus we have defined a function
x: P(A) = 24 via x(S) = xs.

(iii) To prove that this determines a bijection we will define a function k: 24 — P(A) and demonstrate thatkoy = idp(a)
and y o k = idya.

'If the function you've defined in part (ii) is not a bijection, you might need to redefine the function .
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Our function k is the assignment f € 24 {ae A f@@) =T} Wenotethat{fa € A | f(a) = T} S Aby
construction and so {a € A | f(a) = T} € P(A) as desired, and moreover this assignment works for every f and is
uniquely determined. Thus k: 24 — P(A) is a function.

Now we check ko x = idp(4). Given S € P(A) we see that (ko x)(S) = k(x(S)) = k(xs) ={a € A | xs(a) = T}
If we unwind the definition of x5 we see that xg(a@) = T <> a € S and so we may simplify {a € A | xs(a) = T} =
fae AlaeS)=S85—rchatis, (ko x)(S) =S as desired.

Finally we check that x o k = idya. Given f € 24 we have (x © kY(f) = x(k(f)) = Xiaea|f@=T)- If we want to
prove that x(k(f)) = idya(f) = f we must now compare the two functions x(k(f)) and f for equality. This means

ensuring that they have the same values on every element 4 € A. Thus we expand
() = T, xelacA| f(a) =T}
Mecalf@=T 921, x¢lae Al f@=T)

Looking at this we notice thatx € fa € A | f(a) = T} & f(x) = Tandsimilarlyx ¢ fa € A | f(a) = T} &
=(f(x) = T). Now we appeal to a decision procedure on 2 to transform =(f(x) = T) into the logically equivalent
f(x) = L. With these simplifications we may rewrite our expanded x above as

T, fx)=T| _
1, f(x)= J_} = f()
Whence x(k(f)) = idya(f) and so k, x witness a bijection between P(A) and 24,

XiaeA| f@)=T)(X) = {

Exercise 3. Write B4 for the set of functions from A to B.
(i) Express the cardinality of BA in terms of the cardinalities of A and B, assuming these are finite sets.
(i1) Express the cardinality of the powerset 24 of A in terms of the Cardinality of A, assuming that A is a finice set.
(iii) Explain why (ii) is a special case of (i).

Proof. The cardinality is |B|'4 since for each element of A there are |B| choices for its image.

The cardinality of the powerset is 2148 since for each element of A we have two choices — whether or not it is in the
subset — and each choice determines a different subset.

There is a bijection between the powerset and the set of functions from A to the set 2 = {0, 1}, which is why (ii) is a
special case of (i). 4
Exercise 4. How many functions are there from a set of 71 elements to itself? How many bijections are there between a set
with 71 elements and itself?

Proof. By part (i) of the previous problem there are 7" functions from the set of 1 elements to itself. Such a function is a
bijection iff there are no repeated outputs.” So to define a bijection you have 7 choices for the image of the 1st element,
1 —1 for the image of the 2nd, n — 2 for the image of the third, etc. Thus there are 1! bijections. O
Exercise 5.
(i) Let f: A — Bbe a function that has a left inverse g: B — A and also a right inverse h: B — A. Prove thath = g.
(ii) Prove that f: A — B is a bijection if and only if f is an isomorphism without using (i).

Proof. Because g is a left inverse, g o f = 14. Because /1 is a right inverse f o h = 15. Now since composition is associative

h=idgoh=(gef)oh=go(foh)=goidy =g,
If f is a bijection then for cach b € B there exists a unique a € A so that f(a) = b. Define f_l(b) to be this a. Then
by construction f(f_l(b)) = f(a) = b. We see also thata = f‘l(f(a)) because both a and f‘l(f(a)) are defined to
be elements of A whose image under f is f(a) and uniqueness of the bijection says that f(@) € B can have ac most one

preimage. O

and unital we have

Exercise 6.
(i) For any function f: A — B define an explicit isomorphism between A and the graph Tf Cc AXB.
*This implies automatically that there are no repeated inputs because the sizes of the set of inputs and the set of outputs are both the finite number
n.
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(i1) Define a natural function rf — B. Isit necessarily injective? Is it necessarily surjective?

Proof. Detine a function ¢p: A — I'¢ by ¢p(a) = (a, f(a)). The inverse isomorphismis 7141 I'f — A defined by projection
onto the first coordinate.

The natural function rf — B is projection onto the second coordinate. This is injective if and only if f: A — B is
injective and surjective if and only if f: A — B is surjective. O

Exercise 7.

(i) For any non-empty set A, define an isomorphism between the set A X A and the set A2 of functions from the set
with two elements to the set A.

(ii) For any non-empty set A and positive natural number 71, define an isomorphism between the n1-fold cartesian prod-
uct Hn A= AX--- X Aand the set A" of functions from the set with 7 elements to A.’

Proof. (i) Write 2 = {0, 1} for the two elements of the two-element set. The isomorphism ¢p: A X A — A? is defined by
declaring ¢(a, b): 2 — A to be the function that sends 0 to @ and sends 1 to b. The inverse isomorphism ¢ A2 5 AXA
is defined by declaring that () = (f(0), f(1)) for each function f: 2 — A.

Note that (¢(a, b)) = (a,b) since ¢(a,b) is the function that sends 0 to 4 and 1 to b. Also note that ¢p(YP(f)) =
¢(f(0), f(1)): 2 = A is the function that sends 0 to f(0) and sends 1 to f(1). But cthis is exactly what the function f
does. Thus @(1(f)) = f. This proves that i and ¢ define an isomorphism

(ii) The construction and the proof are exactly the same as for (i) but wich slightly more elaborate notation. Let
n=10,1,..,n—1} and define p: AX --- X A = A" to be the function that sends (a4, ..., a,,) to the function that sends
itoa,,;. Definep: A" = A X -+ A to be the function that sends f: n — A to the n-tuple (f(0), f(1), ..., f(n = 1)).

|

The computation above again verifies that these functions define inverse isomorphisms.

Exercise 8. Explain in your own words why all sets with three elements are isomorphic and speculate why I don’t care
what we call the elements of a 3-clement set.

Proof. Given any two sets of three elements it is always possible to define a bijection between them. Thus, all three element
sets are isomorphic. A category theorist generally doesn’t distinguish between two isomorphic objects of the same category,
which is why I don’t care what we call the elements of a 3 element set.’ O

Exercise 9. Suppose p: A —> Bisa surjective function. Explain how the fibers ()fp define an equivalence relation on A
and prove that B is isomorphic to the set of equivalence classes for this equivalence relation.
Proof. This is a special case of the canonical decomposition theorem we discussed in class. Define a ~p a’ it and only if
p(a) = p(a’). Since p is surjective B = im(p) and we showed in class that A/~p = im(p) = B. Explicitly, A/~p may be
identified with the set of fibers for p, i.c.,
~ (1 A
A/Np—{p (byc A|beB}c?24,

and there is always a bijection between the set of fibers of a function and the set of elements in its image. O
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’In fact, it i for any set A and any set I (possible empty and possibly infinite) it is also the case that the product Hl A is isomorphic to the set of
functions AIA The proo(:is by the same argument, but requires somewhat more comp]icated notation. In fact there is a sense in which the product HI A
of the indexed family of sets (A);e; is defined to be the set of functions AL

) i€l g
‘So if you do care, let me know. I'll happily abide by your suggestion!



